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Evaluating Satellite and Climate Data-Derived Indices
as Fire Risk Indicators in Savanna Ecosystems
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Abstract—The repeated occurrence of severe wildfires has high-
lighted the need for development of effective vegetation monitoring
tools. We compared the performance of indices derived from satel-
lite and climate data as a first step toward an operational tool for
fire risk assessment in savanna ecosystems. Field collected fire
activity data were used to evaluate the potential of the normalized
difference vegetation index (NDVI), normalized difference water
index (NDWI), and the meteorological Keetch–Byram drought
idex (KBDI) to assess fire risk. Performance measures extracted
from the binary logistic regression model fit were used to quan-
titatively rank indices in terms of their effectiveness as fire risk
indicators. NDWI performed better when compared to NDVI and
KBDI based on the results from the ranking method. The c-index,
a measure of predictive ability, indicated that the NDWI can be
used to predict seasonal fire activity ( = 0 78). The time lag at
the start of the fire season between time-series of fire activity data
and the selected indices also was studied to evaluate the ability
to predict the start of the fire season. The results showed that
NDVI, NDWI, and KBDI can be used to predict the start of the fire
season. NDWI consequently had the highest capacity to monitor
fire activity and was able to detect the start of the fire season in
savanna ecosystems. It is shown that the evaluation of satellite-
and meteorological fire risk indices is essential before the indices
are used for operational purposes to obtain more accurate maps of
fire risk for the temporal and spatial allocation of fire prevention
or fire management.

Index Terms—Fire risk evaluation, Keetch–Byram drought idex
(KBDI), logistic regression, normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), SPOT VEG-
ETATION, vegetation moisture dynamics.

I. INTRODUCTION

THE LACK of information on the vegetation status and fire
risk prior to the use of fire as a management tool in savanna

ecosystems leads to a significant deterioration of the natural
vegetation and biodiversity [1], [2]. Assessment of the fire risk
therefore constitutes the basis of effective fire management. Tra-
ditional methods of fire risk assessment rely on meteorological
danger indices (MDI) that take the critical variables of fire igni-
tion (e.g., vegetation water status) into account [3], [4]. Besides
the uncertainty inherent in the derivation of a MDI, the applica-
tion of such indices also presents certain operational challenges.
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These challenges are related to the lack of meteorological data
for specific areas, as well as spatial interpolation techniques that
are not always suitable for use in areas with complex terrain fea-
tures [5]. Satellite data have the potential for providing sound
alternatives to meteorological indices in this context. Remotely
sensed data possess significant potential for monitoring fire risk
at regional to global scale, given the synoptic coverage and re-
peated temporal sampling of satellite observations [6], [7]. The
use of spectral indices also has been considered as ideally suited
for use in savanna ecosystems, because, unlike closed canopies
systems, spectral saturation of vegetation indices does not pose
a problem [1], [8].

Relationships between fire risk indices derived from satellite
and climate data have been studied for different vegetation types
[3], [5], [9]. However, no studies have been undertaken to com-
pare the fire risk assessment performance of these indices. The
aim of this study therefore was to evaluate the performance of
remote sensing indices and a MDI, related to vegetation water
status, for fire risk assessment.

At ground level vegetation water status is mainly measured
as fuel moisture content (FMC). FMC is defined as the ratio
between the quantity of water in live vegetation and either the
fresh or dry weight of vegetation [10]. FMC alone does not pro-
vide a comprehensive assessment of fire risk. Other factors re-
lated to fire ignition (e.g., lightning, human factors) or propaga-
tion (e.g., wind, slope) also need to be taken into account. FMC,
however, is widely regarded as one of the most important vari-
ables in fire risk modeling and therefore is incorporated in most
fire danger rating systems worldwide (e.g., U.S. National Fire
Danger Rating System) [4], [11]–[13]. The concept of fire risk
in this study therefore was restricted to the likelihood of fire oc-
currence, given a particular vegetation water status (i.e., FMC).

The MDI considered was the Keetch–Byram drought index
(KBDI). KBDI is a cumulative algorithm for estimating fire po-
tential from meteorological information, including daily max-
imum temperature, daily total precipitation, and mean annual
precipitation [14]. The algorithm for the derivation of KBDI
can be found in Dimitrakopoulos and Bemmerzouk [15]. Sev-
eral studies have shown that KBDI is related to vegetation water
status dynamics, especially for shrub species [3], [11]. KBDI
was designed to incorporate soil water content in the root zone
of vegetation and assesses the seasonal trend of fire risk for a
wide range of climatic conditions [3], [15]. KBDI therefore is
strongly related to FMC, since most cases of moisture stress in
plants (grass and shrub species) are caused by soil moisture de-
ficiencies [5]. Additionally, KBDI has been recommended for
operational use in South Africa [16].

Several authors have proposed the use of indices derived from
satellite data as a method to monitor FMC for fire risk assess-
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ment [3], [7]–[12], [17]. The proposed indices are subdivided
into two classes.

A. Chlorophyll-Related Indices

Chlorophyll-related indices are related to FMC based on the
hypothesis that when vegetation dries out, the chlorophyll con-
tent of leaves decreases proportional to the moisture content [7],
[9]. This assumption has been confirmed for selected species
with a shallow rooting system (e.g., grasslands and understory
forest vegetation) [17], [18], but cannot be generalized to all
ecosystems [7]. Therefore chlorophyll-related indices, such as
the normalized difference vegetation index (NDVI), can only be
used in regions where the relation between chlorophyll content,
degree of curing, and water content has been established.

B. Vegetation Water Status-Related Indices

NDVI does not exhibit an immediate and direct response
to changes in vegetation water status [7]. Indices directly
related to vegetation water status such as the normalized
difference water index (NDWI), a variation of NDVI, use
the SWIR spectral region rather than the red region [19]

NDWI (1)

where and are the reflectances of the near-infrared
(NIR, 0.78–0.89 m) and shortwave-infrared (SWIR, 1.58–
1.75 m) regions, respectively. Several studies have demon-
strated that NDWI is strongly related to the quantity of water
per unit area but not related to the quantity of water per unit of
dry vegetation weight [7], [10]. Consequently, NDWI is not di-
rectly related to FMC but to the quantity of water per unit area
[7], [20], [21]. It is reasonable, however, to suppose that such a
wavelength combination will be useful for fire risk assessment
[3], [7], [10].

The specific objective of this work was to evaluate the ability
of the selected indices (NDVI, NDWI, and KBDI), related to
vegetation water status, to assess fire risk in savanna ecosys-
tems. Index performance was evaluated using fire activity data.
Satellite images can be used to obtain more accurate maps of
fire danger once the fire risk performance of a satellite index is
known. Performance measures (AIC, c-index, and probability
range) extracted from the binary logistic regression model were
used to evaluate the relationship between the selected indices
and fire activity data. The time lag at the start of the fire season
between time-series of fire activity data and selected indices
(KBDI, NDVI, and NDWI) also was studied to verify the ca-
pacity of the indices to predict the start of the fire season.

II. EVALUATION OF INDICES FOR FIRE RISK ASSESSMENT

Fire risk indicators yield dissimilar results when applied to
different biomes or geographic regions, a fact which creates con-
fusion concerning their effectiveness [22], [23]. In particular,
the main unresolved problem is the performance evaluation of
fire risk indices based on satellite or meteorological data. Eval-
uation of fire risk indices furthermore is challenging because it
is a somewhat nebulous concept, as opposed to better defined
fire behavior prediction which is used to calculate observable

fire characteristics (e.g., rate of spread). A fire risk index con-
sequently is not meant to describe the characteristics of a spe-
cific fire, but rather to serve as an indication of fire risk for a
management area [24]. Three well-established methods gener-
ally are used to evaluate such indices [3], [22]. These methods
consist of correlating indices with: 1) fire activity data; 2) mete-
orological data; or 3) FMC data. In this study fire activity data
were used to evaluate the ability of the selected indices to as-
sess fire risk, the reasons being threefold. The first reason is
that an operational fire risk application only becomes feasible
once the relationship between the index and fire activity data
is known [22]. The second reason pertains to fire activity data
being a direct way of evaluating the potential for fire risk as-
sessment of an index, compared to the indirect methods such as
using MDI’s and FMC data. Fire activity data also can be re-
tained as an indication of the stress that is exerted on vegetation
by seasonal meteorological dynamics, based on the assumption
that nonmeteorological factors do not change drastically in the
period of analysis [23].

The relationship between indices and fire activity data has
been evaluated successfully in several studies using logistic re-
gression [24]. The use of logistic regression for fire risk evalu-
ation does not depend on predefined index intervals, nor does it
require rescaling of indices for comparison. In addition to the
statistics associated with logistic regression models, the tem-
poral behavior of an index also should be evaluated before it
can be used as an early warning tool for fire risk assessment
[10], [24], [25]. The ability to predict the start of the fire season
(i.e., temporal behavior) is an important factor in the evalua-
tion of the prediction power of an index and often is studied
using time-series function fits [26]. The TIMESAT program was
selected to extract seasonal parameters (i.e., start of the fire
season) and quantify the temporal behavior of the fire risk in-
dices [26], [27]. The program is based on an iterative and adap-
tive Savitzky–Golay filtering method that has been shown to be
effective in obtaining a high quality time-series from which sea-
sonal parameters can be extracted [27]. The extracted seasonal
parameter (i.e., fire season start) can be used to quantify the
ability to predict the start of the fire season, by evaluating the
time lag between the extracted metric from time-series of fire
risk indices and fire activity [28], [29].

III. STUDY AREA AND DATA

A. Study Area

The study area was the Kruger National Park (KNP), located
between latitudes 23 S and 26 S and longitudes 30 E and 32 E
in the low-lying savanna of the northeastern part of South Africa
(Fig. 1). Elevations range from 260–839 m above sea level, and
mean annual rainfall varies between 350 mm in the north and
750 mm in the south. The rainfall regime within the annual cli-
matic season can be confined to the summer months (November
to April), and over a longer period can be defined by extended
wet and dry seasons [2]. The KNP is characterized by an arid
savanna dominated by thorny, fine-leafed trees of the families
Mimosaceae and Burseraceae. An exception is the northern part
of the KNP where the Mopane, a broad-leafed tree belonging to
the Ceasalpinaceae, almost completely dominates the tree layer.
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Fig. 1. Kruger National Park study area with the weather stations used in the
analyses (right). The elevation of each weather station also is indicated. South
Africa is shown with the borders of the provinces and the study area (top left).

B. Satellite Data

The dataset is composed of ten-day SPOT VEGETATION
(SPOT VGT) composites (S10 NDVI maximum value syn-
theses) acquired over the study area for the period April
1998 to December 2002. SPOT VGT can provide local to
global coverage on a regular basis (e.g., daily for SPOT
VGT). The syntheses result in surface reflectance in the blue
(0.43–0.47 m), red (0.61–0.68 m), NIR (0.78–0.89 m), and
SWIR (1.58–1.75 m) spectral bands. Images were atmospher-
ically corrected using the simplified method for atmospheric
correction (SMAC) [30]. The geometrically and radiometrically
corrected S10 images have a spatial resolution of 1 km. NDVI
and NDWI indices were derived from the corrected SPOT VGT
S10 data.

The S10 SPOT VGT time-series were preprocessed to de-
tect data that may erroneously influence the function fit of
TIMESAT (e.g., spectral anomalies caused by clouds). Several
masks developed by Stroppiana et al. [31] therefore were used
to set weights of indices to zero such that data errors do not
influence the function fit to the correct time-series. The specific
masks used to remove data anomalies were the following.

1) SWIR Mask: The occurrence of lost detectors in the
SWIR SPOT VGT channel was flagged by the status mask of
the S10 synthesis, provided by the data suppliers. The weights
of these data points were set to zero based on the status mask.

2) Satellite Viewing Zenith Angle (VZA) Mask: Pixels lo-
cated at the very edge of the image VZA swath are
nonlinearly affected by resampling methods that yield erroneous
spectral values [32], [33]. The weights of data points with a VZA
above 50 therefore were set to zero such that such pixels would
not erroneously influence the function fit of TIMESAT.

3) Cloud Mask: A threshold approach, based on a method
developed by Kempeneers et al. [34] and Stroppiana et al. [31]
and specifically derived for SPOT VGT S10, was applied to

Fig. 2. Average number of arson fires per month in the Kruger National Park
during the study period (1998–2002). The fire season starts approximately in
May and ends at approximately the end of October.

identify cloud-free pixels data for the study area. A pixel was
classified as cloud-free if the blue reflectance was less than 0.07.
The weights of pixels with cloud contamination were set to zero.

C. Fire Activity Data

A comprehensive fire activity database of the KNP was used
in this study to evaluate the selected indices. The park was
subdivided into over 400 management blocks when prescribed
burning was introduced in 1957 [2], and records were kept
of all fires in each block. The date of each fire, its cause, and
position were extracted from the database for the study period
from 1998 to 2002. The causes of fires were recorded in several
categories such as prescribed fires, lighting fires, arson fires,
and fires of unknown origin [35].

In this study only arson fires were selected. Arson fires are an-
thropogenic fires lit by immigrants, poachers, or tourists. These
fires are influenced by seasonal variation of vegetation water
status and are spatially and temporally random in nature as op-
posed to lightning and management fires [36]. Lightning fires,
on the other hand are dependent on thunderstorms and occur
at the start of rain seasons when vegetation starts regreening.
Management fires, dependent on fire managers, are lit when
vegetation is not completely cured such that fires are not ex-
cessively intensive and destructive. Arson fires and the selected
indices are both related to vegetation water status. Arson fires
consequently were selected to evaluate the performance of in-
dices to identify sites that have a higher fire risk, thereby en-
abling managers to prevent this type of destructive fire on these
sites. (Personal communication Govender N. scientific services
KNP). Fig. 2 illustrates the monthly fire activity of arson fires in
the Kruger National Park during the study period (1998–2002).

An absolute calibration of each of the considered methods
was not attempted, since this would require a much larger
dataset in order to include all temporal climatic changes in the
study area [2], [23]. Fires that burned for several days were
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considered as single events in tallying the number of fires.
The daily fire series were transformed into ten-day fire series.
This was done in order to match fire data and the SPOT VGT
dekades (i.e., ten-day period) by taking the sum of the number
of fires per ten days.

D. Climate Data

Climate data from six weather stations in the KNP with sim-
ilar vegetation types were used to derive the daily KBDI (Fig. 1).
KBDI was derived from daily precipitation and maximum tem-
perature data to estimate the net effect of daily precipitation
and evapotranspiration on the soil water balance [12]. Assump-
tions in the derivation of KBDI include a soil water capacity
of approximately 20 cm and an exponential moisture loss from
the soil reservoir. KBDI was initialized during periods of rain-
fall events (e.g., rain season) that bring soils to field capacity
and KBDI to zero [15]. The preprocessing of KBDI was done
using the method developed by Janis et al. [37]. Missing daily
maximum temperatures were replaced with interpolated values
of daily maximum temperature, based on a linear interpolation
function [38]. Missing daily precipitation, on the other hand,
was assumed to be zero. A series of error logs were automati-
cally generated to indicate missing precipitation values and as-
sociated estimated daily KBDI values. This was done since ze-
roing missing precipitation may lead to an increased fire poten-
tial bias in KBDI. The total percentage of missing data gaps in
rainfall and temperature series was maximally 5% during the
study period for each of the six weather stations. The influence
of the missing data gaps was reduced by two procedures. First,
the influence of missing data was minimized through interpola-
tion and transformation to ten-day time-series. The daily KBDI
time-series were transformed into ten-day KBDI series, sim-
ilar to the SPOT VGT S10 dekades (i.e., ten-day periods), by
taking the maximum of each dekad. Second, the generated error
logs were used to approximate the ideal upper-envelope of the
negative of the KBDI series (i.e., -KBDI) by the iterative fit-
ting method of TIMESAT, thereby minimizing the influence of
missing data. The -KBDI was analyzed in TIMESAT because
the fit to the upper envelope of the time-series corrected for the
dips in the -KBDI series caused by assuming that missing daily
precipitation values were zero. The -KBDI, NDVI, and NDWI
therefore were used throughout this paper to evaluate their per-
formance as fire risk indices.

IV. METHODS

Care was taken in the selection of the spatial extent of the
sampling area around each weather station to be able to eval-
uate time-series of fire activity data and selected indices. This
was done in order to achieve a balance between the need for
a statistically adequate amount of fire activity data and the de-
mand for homogeneity within sampling areas. Nonmeteorolog-
ical factors were assumed to remain relatively constant in the
sampling area, such that fire activity data can be used as an in-
dication of the stress that is exerted on vegetation by seasonal
meteorological dynamics.

Time-series of satellite indices were derived by selecting sa-
vanna pixels, based on the land cover map of South Africa [39],
in a 3 3 pixel window centered at each of the meteorological

stations to reduce the effect of potential misregistration [5]. Me-
dian values of the nine-pixel windows were retained instead of
single pixel values. The median was preferred to average values
since it is less affected by extreme values, and therefore is less
sensitive to potentially undetected data errors.

Fires were selected within a radius of 30 km around each
weather station in order to extract time-series of fire activity
data. The selected indices were assumed to be valid for the
30-km radius around each weather station, since the fire risk
indices (e.g., -KBDI, NDVI, or NDWI) are intended as an in-
dication of fire potential for a management area, and not of
specific fire characteristics [24], [25]. Furthermore, the sample
areas around weather stations did not overlap, resulting in fires
being selected only once per weather station. As mentioned be-
fore, the study focused on index-based fire risk evaluation, as
well as assessment of the potential to predict the start of the fire
season.

A. Fire Risk Evaluation

Binary logistic regression successfully has been used in sev-
eral studies to evaluate the performance of indices by analyzing
the relationship between the index and fire events [23], [24]. A
binary logistic regression model therefore was used to define the
probability of a fire-dekade , a dekade (i.e., ten-day period)
with one or more fires, as a function of an explanatory variable

, i.e., fire risk index

odds that occurs

(2)

where and is the prob-
ability that for a given . The regression parameters

were estimated using the maximum likelihood method [40].
is the logistic function of . The logit model

is a linear regression model, since is a weighted sum
of the s. Fire-dekades can be retained as an appropriate indi-
cation of fire activity and the associated vegetation stress due
to seasonal meteorological dynamics, based on the assumption
that nonmeteorological factors do not change drastically in the
period of analysis [23]. Binary data (e.g., fire-dekades and no
fire-dekades) and not the amount of fires therefore were used in
current study. This was done because the objective of the study
was related to prediction of fire-dekade probability as measure
of fire activity and not the amount of fires [24]. Accurate burnt
area data were not directly available in this study and therefore
were not used in the analysis.

All available fire activity data selected per weather station
were used in a binary logistic regression model with fire activity
data as response variable and a categorical station variable and
an index (-KBDI, NDVI, or NDWI) as explanatory variables.
The station variable was included in the model to determine
if the probability of a fire-dekade was statistically different for
the various weather stations and station related factors (e.g., soil
type). The Wald test statistic was used to verify if explanatory
variables used in the model were significant to warrant inclusion
in the final model [40]. The Wald test statistic also was used to
verify the assumptions of linearity. The X-values were expanded
into restricted cubic spline (RCS) functions, with the number of
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knots specified according to the estimated “power” of each pre-
dictor. We assumed that the most complex relationship could
be fitted using a RCS function with five knots, similar to Har-
rell [40]. Five knots therefore were used in all the models to be
able to compare results, while accounting for similar amounts
of nonlinearity [40].

Common measures to assess model performance include
overall performance measures to assess the model fit and
discrimination measures to evaluate the ability of the model
for distinguishing between fire-dekades and no fire-dekades.
The modified Akaike’s information criterion (AIC) and the
model probability range were used in this study to assess the
overall performance, while the c-index was used to evaluate
the discrimination power of the fire risk indices [24], [40].
The “le Cessie-van Houwelingen” unweigted sum of squares
test for goodness-of-fit furthermore was used to examine the
difference between the actual probability and the predicted
probability. This statistic was used to determine if the model is
well-calibrated and provides a significant fit for the data [40].

The AIC was used in adjusted “chi-square” form

AIC (3)

where is the model likelihood ratio chi-squared statistic
and is the degree of freedom of the model. The AIC was used
to rate the model fit and penalize for complexity, i.e., the number
of parameters used in the model. The higher the AIC, the better
the model fit and overall performance of the model [40]. How-
ever, the value of AIC only provides information about the rela-
tive performance of the model, since the value itself has no other
specific meaning.

The c-index therefore was included since it provides inter-
pretable information on the discrimination of the logistic re-
gression model and also can be used as a parameter to rank the
different fire risk indices. This statistic is identical to the area
under the receiver operating characteristic curve, given that the
outcome variable is binary. A c-index value lower than 0.5 indi-
cates random predictions, whereas a value of 1 indicates a per-
fect prediction. A model having a c-index of roughly 0.8 has
utility in predicting the responses of individual subjects [40].

The range of probability values also is an important indica-
tion of the effectiveness of an index since it corresponds to a
wider range of vegetation conditions [24]. Andrews et al. [24]
stipulated that a model with a wide range of probability values
is preferred to a model with a small range of probability values.

The comparison technique of Andrews et al. [24] that quan-
tifies the performance of indices in assessing fire risk was used
in this study. The selected measures (AIC, c-index, the model
probability range) were used to rank the selected fire risk in-
dices. The three measures were ranked, with the lowest rank
(i.e., 1) being the measure that performed “best” when esti-
mating fire risk assessment performance of an index (-KBDI,
NDVI, and NDWI). The ranks were summed and an overall rank
was assigned to each index.

B. Ability to Predict the Start of the Fire Season

The TIMESAT program was optimized for this study to
process individual time-series of different origin (e.g., fire ac-
tivity, climate, and remote sensing data) and to extract a specific
metric. The “start of the fire season” metric was used to evaluate

the time lag between fire activity data and selected satellite
and meteorological indices. This method made investigation of
the time lag at a defined instant in time possible, as opposed
to regression or cross-correlation analysis, by which only the
general time lag between time-series can be studied [38].

The TIMESAT program implements a number of possible
processing algorithms. The method used was based on local
polynomials that were iteratively fitted to the upper envelope of
the time-series, described as an adaptive Savitzky–Golay filter
[27]. The function was fitted to the upper envelope since most
noise in the selected indices was negatively biased (e.g., noise
associated with clouds and atmospheric contamination in NDWI
and NDVI) [26]. The ancillary metadata from the preprocessing
of the SPOT VGT S10 data and the climate data furthermore
were used in the iterative least-squares fitting to the upper en-
velope of the time-series (-KBDI, NDVI, and NDWI). Conse-
quently, the Savitzky–Golay filter efficiently reduced contami-
nation in the time-series [27].

One of the critical issues in using satellite data to detect the
start of the fire season, is identifying the offset threshold (i.e.,
the start of the decrease) of the satellite-based indices [28], [41].
The definition was different for the fire activity data and the in-
dices (-KBDI, NDVI, and NDWI), because the indices decrease
when fire activity increases (number of fires) (Fig. 3). Figs. 4 and
5 illustrate the defined metric for fire activity data and selected
indices, respectively. The start of the fire season for fire activity
data was defined as the point in time for which the function fit
value was 20% (to the left side of the fire season midpoint) of
the maximum (Fig. 4). Fire activity (number of fires per dekade)
served as a valid definition of the fire season, which therefore
was approximated correctly by fitting a function through the
upper envelope [24]. The start of the fire season for the selected
indices was defined from the function fit as the point in time
for which the function fit value was 80% (to the right of the fire
season midpoint) of the maximum (Fig. 5).

This method is similar to the method of Kang et al. [41] where
different thresholds (e.g., 10% and 20%) were used to define the
onset of greenness in the MODIS leaf area index. The 20% and
80% values were used for this study because smaller factors are
vulnerable to potential contamination by clouds and misregis-
tration [41]. The purpose of the metric was not to define the
start of the fire season, but to serve as a sampling technique for
comparison of time-series at a point in time.

V. RESULTS

A. Fire Risk Evaluation

The factor plot in Fig. 6 illustrates the relationship between
binary fire activity data and the selected indices and demon-
strates the difference between fire-dekades and no fire-dekades
for -KBDI, NDVI, and NDWI. It is clear that the overlap be-
tween fire-dekades and no fire-dekades was smaller for NDWI
compared to NDVI and -KBDI. Logistic regression models were
fitted to quantify the ability to discriminate fire-dekades from no
fire-dekades.

Results of the Wald statistic for the fitted logistic regression
models that included the index and categorical station as ex-
planatory variables, demonstrate that the indices and the non-
linearity in the model were significant at a 95%
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Fig. 3. Temporal dynamics of fire activity and vegetation water status around the Letaba weather station are illustrated by the number of recorded fires (number
of fires) along with (a) -KBDI, and (b) the relationship between NDVI and NDWI. The axis of the fire histogram in (a) and (b) is shown at the right-hand side of
plot (a).

Fig. 4. Final fit of the Savitzky–Golay (SAVGOL) function to the fire activity
data series, with the start of fire season metric (20% value) overlaid on the graph.
The start of the fire season was defined as the time at which the number of fires
had risen to 20% of the peak index value of the final SAVGOL fit where a dekade
is defined as a ten-day period. The fire activity data contained no data errors
(clean data) when the SAVGOL function was fitted.

confidence level. It therefore was decided to account for the non-
linearity when comparing different logistic regression models.
Results of the Wald statistic also illustrate that the categorical

Fig. 5. Final fit of the Savitzky–Golay (SAVGOL) function to the NDWI series
(clean data), with the start of fire season metric (80% value) overlaid on the
graph. Points with flagged data errors were assigned weights of zero and did not
influence the fit. The start of the fire season was defined as the time for which
NDWI had decreased to 80% of the peak index value of the final SAVGOL fit
where a dekade is defined as a ten-day period.

station variable was not significant at a 95% confi-
dence level. This means that after the index variable was taken
into account, the probability of observing a fire was not statisti-
cally different for the various weather stations. It also indicated
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Fig. 6. Factor plots of the fire-dekades as binary data (0 = no fire-dekad; 1 = fire-dekad) against the selected indices (-KBDI, NDVI, and NDWI). The fire
activity data included 586 no fire-dekades and 115 fire-dekades. The upper and lower boundaries of the box indicate upper and lower quartiles. The median is
indicated by the solid white line within each box. The whiskers connect the extremes of the data which were defined as 1.5 times the interquartile range of the box.
Outliers are represented by (—).

TABLE I
MEASURES AND RANKING FOR THE LOGISTIC REGRESSION MODEL OF FIRE

DEKADES AND -KBDI, NDVI, AND NDWI THE THREE BINARY LOGISTIC

REGRESSION MODELS (DEGREES OF FREEDOM= 4) WERE ALL SIGNIFICANT

(P < 0:05) WITH SIGNIFICANT EXPLANATORY VARIABLES (-KBDI,
NDVI, AND NDWI) (P < 0:05) AND A SIGNIFICANT NONLINEAR

COMPONENT (P < 0:05). THE RESPONSE VARIABLE INCLUDED 586
NO FIRE-DEKADES AND 115 FIRE-DEKADES. THE VALUES IN THE

PARENTHESES ARE THE RANK VALUES

that station related factors (e.g., nonmeteorological factors such
as soil type) did not influence the relationship between the se-
lected indices and fire activity. Consequently, the categorical
station variable was excluded as a variable in the logistic re-
gression models.

The selected indices (-KBDI, NDVI, and NDWI) and the
nonlinearity of the indices were found to be significant by the
Wald test statistic at a 95% confidence level. The “le
Cessie-van Houwelingen” goodness-of-fit statistic confirmed
that the three models fitted the data well at a 95% confidence
level. Table I shows the results of the statistical measures that
were used to rank the fire risk assessment performance of the
indices extracted from the final model fit for each index. It is
evident from the final ranking that NDWI performed better
than NDVI and -KBDI. The results from Table I confirm the
conclusions related to the factor plot (Fig. 6), where NDWI
best separated the fire-dekades from the no fire-dekades.

Fig. 7 demonstrates the increased probability for a fire-dekade
as the value of the index decreased, which conformed to expec-
tations illustrated in Fig. 3. The logit proportions of fire activity
by deciles of -KBDI, NDVI, and NDWI illustrate the good-
ness-of-fit of the logistic regression model. The logit propor-
tions confirm that the model adequately fits the data since more
than approximately 95% of the logit proportions fall inside the
confidence intervals [40]. Fig. 7 also shows that probabilities of
-KBDI, NDVI, and NDWI started to decrease when the values
of -KBDI, NDVI, and NDWI were at their lowest level. This
was attributed to the significant nonlinear behavior of the data.

B. Ability to Predict the Start of the Fire Season

The SPOT VGT S10 time-series consisted of four fire seasons
(1998–2002) from which four values for the fire season metric
(the start of fire season) could be extracted. Twenty-four metric
values ultimately were available for analysis per index, since
six weather stations were used. Fig. 8 summarizes the time lag
data between the fire activity data and the selected indices. It
should be noted that adequate fire activity data were unavailable
to estimate the fire season and extract the metric for specific
years. These metrics were filtered out which resulted in 20 time
lags per index.

-values from the t-test were adjusted with the Bonferroni
method for multiple comparisons to evaluate the differences
shown in Fig. 8 [38]. The -values illustrate that time lags for
-KBDI, NDVI, and NDWI were significantly positive at a 95%
confidence level . The results show that these fire risk
indices related to vegetation water status start decreasing before
the fire activity increases.
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Fig. 7. Logistic regression curves (—) for log odds (i.e., log[P=1 � P ], where P is the probability of a fire-dekade) of a fire-dekade to occur versus -KBDI,
NDVI, and NDWI. The dashed lines (- - -) indicate the upper and lower borders of the 95% confidence interval. The logit proportions of fire activity by deciles of
-KBDI, NDVI, and NDWI (586 no fire-dekades and 115 fire-dekades) are shown by the to illustrate the model fit.

Fig. 8. Plot of the time lag means expressed in dekades (i.e., ten-day periods)
for -KBDI (n = 20), NDVI (n = 20), and NDWI (n = 20) with fire activity
at the start of the fire season. The error bars indicate the 95% confidence interval
around each mean.

The analysis of variance model fit (ANOVA) indicated that
the means of the time lags for -KBDI, NDVI, and NDWI were
significantly different . This result was confirmed by
the Tukey multiple comparisons of means test which showed
that time lags of -KBDI and NDVI differed significantly at a
95% confidence level . The Tukey test also indicated
that time lags of NDWI and NDVI , and NDWI and

-KBDI did not differ significantly at a 95% confi-
dence level. The Levene’s test for homogeneity of variance in-
dicated that the variances of time lags of -KBDI, NDVI, and
NDWI did not differ significantly at a 95% confidence level

.

VI. DISCUSSION

A. Fire Risk Evaluation

In this study we focused on relating time-series of selected in-
dices (-KBDI, NDVI, and NDWI) to field collected fire activity
data. Satellite and meteorological indices, related to vegetation
water status, were evaluated with a comparison technique based
on ranking of logistic performance measures. Fire-dekades (i.e.,
1), a ten-day period with one or more fires, and no fire-dekades
(i.e., 0) were used as a binary measure of fire activity related to
vegetation stress in a logistic regression model.

Multiple-fire-dekades, defined as a dekade with more than
five fires were used in a preliminary phase of the research to
better describe the fire activity. The use of multiple fire-dekades
resulted in similar conclusions concerning the performance of
the indices with fire-dekades. It therefore was decided to use
a fire-dekade as an appropriate indicator to represent fire ac-
tivity since the number of fires per decade did not influence the
ranking of the selected fire risk indices. The use of fire-dekades
and no fire-dekades as a binary predictor variable in a binary lo-
gistic regression model also was justified to make results com-
parable to other evaluation studies of meteorological fire risk
indices [23], [24]. “Large fire-dekades” (e.g., a ten-day period
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were the burn area is larger than 10 ha) could be defined as an-
other indicator of fire activity in the future when accurate burnt
area data becomes available.

It is clear from Table I that the satellite-derived NDWI exhib-
ited an improved performance over NDVI when studying the
relation of each index with fire activity. The selected indices
are directly (NDWI) or indirectly (NDVI) related to vegetation
water status [10]. These findings showed that NDWI, related to
the amount of water per unit area, is a superior indicator of sea-
sonal fire activity during 1998–2002 for savanna vegetation of
the KNP. A c-index of 0.78 was achieved for the logistic regres-
sion model with the NDWI as explanatory variable which means
that the model has utility in predicting fire activity [40] (Table I).
NDWI therefore could be used to monitor seasonal fire activity
in savanna ecosystems.

The integration of satellite variables with meteorological
variables such as wind speed, relative humidity, and socio-eco-
nomic parameters, is however necessary to account for all the
fire activity variation during a fire season. The logistic regres-
sion model with one index (e.g., NDWI) alone therefore should
not be used as a reliable predictor of fire behavior. However, the
remotely sensed index could be used to monitor the seasonal
trend of fire potential and to determine the spatial allocation for
management fires.

The distinct nonlinearity in the model indicated that the se-
lected indices did not account for all the variation in fire ac-
tivity. The nonlinearity demonstrated by Fig. 7 was attributed to
the low fire activity at low index values (Fig. 3). Fig. 3 shows
that fire activity started to decrease at the end of the fire season
when indices (-KBDI, NDVI, and NDWI) were still low. This
phenomenon was identified as the origin of the decrease in prob-
ability (i.e., log odds) of a fire-dekade when the index was at its
lowest level (e.g., NDVI ), shown in Fig. 7. The phenom-
enon itself was explained by the fact that the fire management
of the Kruger National Park was on high alert during the pe-
riod of extreme weather conditions (e.g., no rain and high tem-
peratures). Fire activity possibly decreased during this period
because potential ignition sources were removed and occurring
fires were immediately extinguished.

Another factor that influenced the illustrated index nonlin-
earity (Fig. 7) could have been the small fire activity dataset
(115 fire-dekades occurred during 1998–2002). This can be ex-
plained by the rule that as vegetation dries, so does the proba-
bility of a fire occurrence increase [42]. The influence of excep-
tions, i.e., fires that occur when vegetation is still wet or lack
of fires when vegetation is dry, increases for a smaller fire ac-
tivity dataset. However, datasets of comparable sizes were used
by Viegas et al. [23] to assess the performance of meteorolog-
ical indices. The behavior of the indices could be explained by
taking the nonlinear trends into account, as shown in Fig. 7. It
would have been impossible, assuming linearity, to reveal the
decrease in probability at the time period when indices were
low.

B. Ability to Predict the Start of the Fire Season

The ability of the selected indices to predict the start of the
fire season was studied by extracting the “start of fire season”
metric from time-series of selected indices and fire activity data

with TIMESAT and evaluating the time lag between these met-
rics. TIMESAT, a simple but robust method based on the Sav-
itzky–Golay filter, also was used to remove noise (e.g., clouds
and atmospheric conditions) in the time-series. The possibility
exists that short-duration index anomalies caused by insuffi-
cient/abundant rain were suppressed by smoothing. TIMESAT,
however, was developed to make the fit of the upper envelope
approach the time-series and to reflect significant anomalies
through an iterative process [27]. Chen et al. [43] concluded
that this approach is more flexible and effective in obtaining
high-quality time-series when compared to the existing Best
Index Slope Extraction (BISE) algorithm and Fourier-based fit-
ting methods.

The start of the fire season was defined as a metric to eval-
uate the effectiveness of the index time-series to serve as early
warning indicators, based on the time lag between time-series of
fire activity data and the selected indices (Fig. 8). Results cor-
roborated the findings of Anyamba et al. [13], which showed
that the fire season started at least halfway through the senes-
cent phase of the NDVI curve, following the end of the rain
season (Fig. 3). The results from Anyamba et al. [13] further-
more were confirmed by the finding that the selected indices
detected change in vegetation condition before the fire season
started (Fig. 8). The initiation of the decrease of the indices
(-KBDI, NDVI, and NDWI) occurred before the fire activity in-
creased, as illustrated by Figs. 3 and 8. This indicated that the in-
dices detected change in vegetation water status before the start
of the fire season and could be used to predict the start of the
fire season.

It was shown that the NDWI time lags did not differ sig-
nificantly from the NDVI and -KBDI time lags (Tukey test,

) and that variances of NDWI, NDVI, and -KBDI were
not significantly different (Levene’s test, ). Figs. 8 and
3 however show that NDWI tended to detect fire activity ear-
lier than NDVI. This accentuated the direct relationship between
NDWI and the amount of water content per unit area [10]. The
water content per unit area, related to NDWI, first will decrease
whereupon the vegetation will start drying out as meteorolog-
ical conditions change (high temperatures and no rain). Conse-
quently, the drying out of the vegetation will cause a decrease in
NDVI. This phenomenon is highlighted by Fig. 3, which shows
that NDWI started to decrease before NDVI during the fire part
of the fire season. The difference between NDWI and NDVI
time lags however was not significant (Tukey test, )
because NDVI also is related to vegetation water status (i.e.,
FMC) for selected species with a shallow rooting system (i.e.,
grass species in savanna) [7].

Fig. 8 showed that -KBDI detected the start of the fire season
earlier (approximately 4–6 dekades) than the NDVI (approxi-
mately 1–3 dekades). This also underlined the expected relation-
ship between meteorological condition changes and vegetation
drying out. The -KBDI, determined by the meteorological con-
ditions, therefore will decrease after which the drying of vege-
tation will cause a decrease in NDVI.

The results demonstrated that analysis of time lags between
time-series of fire activity and fire risk indices is an important
consideration when evaluating performance of fire risk indices.
Results of the ability of fire risk indices to detect the start of
the fire season can be used as an indication of the difference in



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 6, JUNE 2006 1631

temporal properties. More research however is needed to study
time lag at other specific moments in time (e.g., end of the fire
season).

VII. CONCLUSION

The performance of satellite indices and meteorological in-
dices for fire risk assessment in savanna ecosystems was eval-
uated. We focused on the relation of the time-series of selected
indices (KBDI, NDVI, and NDWI) with fire activity data. The
aim was to compare the performance of indices derived from
climate and satellite data toward an operational implementation
of an early warning tool for fire risk assessment.

We used binary logistic regression to rank indices in order to
evaluate their performance as fire risk variables. Fire-dekades
were used as an appropriate indicator of fire activity related to
vegetation water status. RCS functions were applied to account
for significant nonlinearity, thereby making the study of the non-
linear relationship between the indices and fire activity feasible.
NDWI demonstrated higher overall performance and discrimi-
nation power when compared to NDVI and KBDI. The logistic
performance measures showed an improved performance for the
satellite-derived indices (NDVI, NDWI) when compared to the
meteorological variables (KBDI) which could enable fire man-
agers to obtain more accurate large area maps of fire risk for the
allocation of fire management. The c-index, a measure of pre-
dictive ability, indicated that the NDWI can be used to predict
fire activity . NDWI therefore by extension could
be used to monitor the seasonal trend of fire activity. This spa-
tial and temporal information source on vegetation water status
should be integrated with climate parameters (e.g., wind speed)
for operational and accurate fire risk assessment.

The time lag between time-series of fire activity data and
time-series of the selected indices at the start of the fire season
also was studied to evaluate the ability of index time-series to
predict the fire season start. Results showed that KBDI, NDVI,
and NDWI can be used to predict the start of the fire season. This
indicates that the temporal behavior analysis at specific points
in time is important for the evaluation of performance of fire
risk indices and that further research is required to study the
time lag at other specific moments in time (e.g., end of the fire
season). Binary logistic regression and temporal analysis have
shown to be important tools to evaluate fire risk indices. The
NDWI had the highest capacity to monitor fire activity dynamics
and is able predict the start of the fire season. Further research
also is needed to investigate the performance of meteorological
and satellite-derived fire risk indices for other vegetation types
(e.g., forest and shrubland).
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