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Abstract

This paper evaluated the capacity of SPOT VEGETATION time-series to monitor herbaceous fuel moisture content (FMC) in order to improve
fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. In situ herbaceous FMC data were used to assess the
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Vegetation Dryness Index (VDI), Improved VDI
(IVDI), and Accumulated Relative NDVI Decrement (ARND) during the dry season. The effect of increasing amounts of dead vegetation on the
monitoring capacity of derived indices was studied by sampling mixed live and dead FMC. The IVDI was proposed as an improvement of the VDI
to monitor herbaceous FMC during the dry season. The IVDI is derived by replacing NDVI with the integrated Relative Vegetation Index (iRVI),
as an approximation of yearly herbaceous biomass, when analyzing the 2-dimensional space with NDWI. It was shown that the iRVI offered more
information than the NDVI in combination with NDWI to monitor FMC. The VDI and IVDI exhibited a significant relation to FMC with R* of
0.25 and 0.73, respectively. The NDWI, however, correlated best with FMC (R2:0,75), while the correlation of ARND and FMC was weaker
(R*=0.60) than that found for NDVI, NDWI, and IVDI. The use of in situ herbaceous FMC consequently indicated that NDWI is appropriate as
spatio-temporal information source of herbaceous FMC variation which can be used to optimize fire risk and behavior assessment for fire

management in savanna ecosystems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is the second in a two-part study to investigate the
potential of the SPOT VEGETATION (SPOT VGT) satellite
data for fire risk assessment in the savanna ecosystem of Kruger
National Park, South Africa. In the first part, the most optimal
method to estimate herbaceous biomass was selected through
correlation analysis with in situ biomass measurements. In situ
fire activity data were used to validate the hypothesis that fire
risk assessment was enhanced by the monitoring of biomass and
vegetation water content (VWC) with the SPOT VGT sensor
(Verbesselt et al., 2006a). The correlation of VWC related
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satellite indices with in situ VWC measurements, however, still
required evaluation in order to improve fire risk models. The
moisture content of fuel is one of the most important variables in
fire ignition and behavior modeling and is included in most fire
risk models worldwide (Chuvieco et al., 2004a). The concept of
fire risk therefore is restricted in this study to the likelihood of
fire occurrence, given a particular fuel moisture content (FMC).
The physical definitions of VWC used in literature vary from
water volume per leaf or ground area (equivalent water
thickness, i.e. EWT) to water mass per mass of vegetation dry
matter (i.e. FMC) (Jackson et al., 2004). The quantity of water
per dry mass (FMC) is a more important variable for monitoring
fire risk when compared to the amount of water per area (EWT),
since it affects fire ignition and propagation (Agee et al., 2002).
Additionally, EWT is difficult to operationally measure in the
field, because it requires the calculation of leaf area (Chuvieco
et al., 2003).
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FMC is defined as the ratio of the water quantity in
vegetation and the dry weight of vegetation for both the dead
and live vegetation (i.e., fuel):

FW — DW
FMC = ——1r—

x 100 [%] (1)
where FW is the fresh weight and DW is the dry weight of the
same vegetation sample. Dead fuels are fuels in which moisture
content is exclusively controlled by environmental conditions
(e.g., dormant or dead grasses, litter, twigs, branches), whereas
live fuels are influenced by soil moisture and plant physiology
(e.g., length of the root system). Live fuels can be divided in two
categories, namely herbaceous and woody. Herbaceous fuels
include grasses, forbs, and ferns, while woody fuels include the
leaves and twigs of small woody shrubs (Carlson & Burgan,
2003). Live herbaceous fuels are modeled in the 1978 National
Fire Danger Rating system as dead fuels when the live FMC
dips below 30% (Carlson & Burgan, 2003). Dead fuels are the
most dangerous because they are drier than live fuels and more
dependent on atmospheric variables (e.g., relative humidity,
solar insolation). The moisture content of live fuels has a
marginal role in fire ignition, but it is critical in fire propagation
modeling because the amount of water in live vegetation is
directly related to the rate of fire spread (Carlson & Burgan,
2003).

Traditional methods for FMC measurement are based on
field sampling or approximation by meteorological fire risk
indices (Camia et al., 1999). Dead FMC can be estimated with
meteorological danger indices, which attempt to account for the
adsorption—evaporation relationship in inert materials (Camia et
al., 2003). Applying meteorological indices to live FMC trends
is complex because live plants are much less dependent on
atmospheric conditions than dead materials (Chuvieco et al.,
2004b). Additionally, meteorological data are frequently not
available for fire prone areas, whereas satellite data have the
potential to provide spatial and temporal measurements of live
FMC given the large areas affected by wildland fires. Several
remote sensing studies, however, included dead fuels when
measuring live FMC of herbaceous vegetation since dead
grasses are also observed by satellite sensors (e.g., Chuvieco et
al.,, 2003; Ceccato et al.,, 2002; Hardy & Burgan, 1999).
Herbaceous FMC, instead of strictly live or dead FMC, is
defined in this study as the FMC of a mixture of actual
proportions of live and dead herbaceous vegetation. On the one
hand, the inclusion of dead fuels in FMC samples increases the
correlation with satellite vegetation indices since the overall
FMC variation will increase. On the other hand, the estimation
of FMC for dead fuels from remotely sensed data is more
complex since dead fuels do not show changes in chlorophyll
content of leaves due to weather related water variations.

The estimation of live FMC from satellite data has been
attempted with both high and low resolution sensors. The
former reduces noise in quantitative correlation with field data,
since they provide a higher spatial accuracy (Chuvieco et al.,
2002). The latter offers a higher temporal resolution and are
more likely to be used operationally since fire managers require

frequent updates of FMC (Chuvieco et al., 2004b). Several
studies have examined relationships between satellite vegeta-
tion indices and live FMC. Good correlations between FMC and
multi-temporal series of NOAA-AVHRR have been found for
herbaceous species using the normalized difference vegetation
index (NDVI), but low correlations coefficients were found for
shrubs and trees (Chuvieco et al., 2002; Hardy & Burgan, 1999;
Illera et al., 1996). These studies assumed that the chlorophyll
content of leaves or the degree of curing was proportional to the
moisture content. This assumption may be correct for some
species but cannot be generalized to all ecosystems. Water
absorption measures, such as the Normalized Difference Water
Index (NDWI), may prove to be more appropriate for
monitoring live FMC than measures of chlorophyll absorption
since the NDWI is directly related to plant water content
(Chuvieco et al., 2002; Dennison et al., 2005). The NDWI, first
proposed by Hunt et al. (1987) who named it the Normalized
Difference Infrared Index, is derived by combining NIR and
SWIR spectral domain to derive leaf water content:

NDWI — PNIR — PSWIR 2)
PNIR T PSWIR

where pyr and pgwir are the reflectances of the NIR and
SWIR regions, respectively. Gao (1996) used the SWIR band
centered at 1.24 um, now available on MODIS, for NDWI
because this band has similar atmospheric transmittance as the
NIR band whereas other studies used the SWIR band in the
1.58—1.75 pm spectral domain to derive the NDWI from SPOT
VEGETATION or LANDSAT TM/ETM +imagery (e.g., Jack-
son et al., 2004; Maki et al., 2004; Xiao et al., 2002).

Additional efforts are required for vegetation canopies where
the influence of soil and plant species mixing complicates the
estimation of FMC from satellite data. The total leaf area
quantity per unit area, namely the leaf area index (LAI), must be
known in addition to NDWI in order to estimate FMC at canopy
level (Maki et al., 2004). Previous studies have investigated the
relationship between LAI and remotely sensed data and
reported findings suggesting that LAI was related to NDVI
(Carlson & Ripley, 1997; Myneni et al., 1997). Maki et al.
(2004) accordingly used the NDVI to estimate the total leaf area
quantity and derived the vegetation dryness index (VDI) by
combining NDVI and NDWI. Ceccato et al. (2002), however,
demonstrated that NDVI is highly linearly related with NDWI
in savanna ecosystems. It is therefore likely that the combina-
tion of NDVI and NDWI will not be able to improve the
monitoring of herbaceous FMC in savanna ecosystems. On the
other hand, the sum of the Ratio Vegetation Index values (RVI),
the ratio of NIR and red wavelength ranges, during the previous
rain season (November to April) is significantly related to the
yearly herbaceous biomass during dry season (Verbesselt et al.,
2006a):

RVI =" RVI, (3)
i=1

where RVI; is the RVI value at time i. It consequently was
hypothesized that iRVI, in combination with NDWI, could
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improve the VDI (i.e. IVDI) and optimize the monitoring of
herbaceous FMC for fire risk assessment.

This study evaluated the capacity of selected satellite
vegetation indices to monitor herbaceous FMC data during
dry season in order to improve fire risk assessment. The
herbaceous FMC sampled during the dry season included the
actual proportions of live and dead vegetation in the study area
in order to represent the moisture contents that wild land fires
would encounter when burning through the herbaceous layer.
The effect of increasing amounts of dead herbaceous vegetation
as the dry season progresses is studied, since fire risk
assessment is particularly important in that period due to the
high fire activity. The selected vegetation indices derived from
the SPOT VGT sensor were NDVI, NDWI, VDI, IVDI, and the
accumulated relative NDVI decrement (ARND).
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2. Study area and data
2.1. Study area

The Kruger National Park (KNP), located between latitudes
23°S and 26°S and longitudes 30°E and 32°E in the low-lying
savannas of the north-eastern part of South Africa, was selected
as study area (Fig. 1). The KNP was chosen because of the
existing facilities to measure biomass and FMC in the field and
an established fire research program to improve fire manage-
ment based on fire risk and behavior assessment. Elevations
range from 260 to 839 m above sea level, and mean annual
rainfall varies between 350 mm in the north and 750 mm in the
south. Most of the rain falls during a 5 month rain season in the
summer months (November to April) (van Wilgen et al., 2004).

Biomass Classes

208 - 2254 kg/ha

2255 - 3316 kg/ha

3317 - 7312 kg/ha

Sample units

0 10 20 30 40 50 g,

Fig. 1. Sampling design and experimental burn plots (EBP) in the Kruger National Park, South Africa. The EBP’s consist of four replicates (@) in each of the four
major savanna woodland landscapes in the park; (A) Mopani, (B) Knob Thorn, (C) Combretum, and (D) Sourveld plots. A two-stage stratification approach was used
to divide the study area in 6 strata (2 vegetation type strata separated by (- - -) and three biomass classes) to select the 12 sample units (Verbesselt et al., 2006a). The
legend illustrates the range in herbaceous biomass (kg/ha) per class. Southern Africa is shown with the borders of the provinces and the study area (black) (top right).
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The KNP comprises mainly tropical grassland with scattered
thorny, fine-leafed trees of the families Mimosaceae and
Burseraceas. An exception is the northern part of the KNP
where the Mopane, a broad-leafed tree belonging to the
Ceasalpinacea, almost completely dominates the tree layer.

2.2. Satellite data and pre-processing

The potential for fire risk assessment of the S10 ten daily
composites of SPOT VGT data, acquired over the study area for
the period April 1998 to September 2003, was evaluated. The
S10 syntheses provide surface reflectance in the blue (0.43—
0.47 um), red (0.61-0.68 um), near-infrared (NIR, 0.78—
0.89 pm), and shortwave-infrared (SWIR, 1.58—1.75 pm)
spectral bands. The SPOT VGT images were acquired daily by
the SPOT VGT satellite around 10h30 local solar time, which is
the best acquisition time to obtain a minimal cloud cover. This
acquisition time, however, is not most appropriate time to
monitor maximum vegetation dryness since minimum FMC for
grasslands occurs around 14h00, but offers a good approxima-
tion (Chuvieco et al., 1999). The atmospherically, geometri-
cally, and radiometrically corrected S10 images have a spatial
resolution of approximately 1 km?. Images were atmospheri-
cally corrected using the simplified method for atmospheric
correction (SMAC) (Rahman & Dedieu, 1994).

The S10 data were computed from all the overpasses above
the study area during 10 daily periods. The synthesis between
different passes is performed by selecting the measurement that
corresponds to the maximum NDVI value to reduce the
influence of the atmosphere, aerosols, and clouds (Holben &
Fraser, 1984). This Maximum Value Compositing (MVC)
technique minimizes data gaps due to cloud interference or
missing data and overcomes systematic errors that reduce the
satellite index value. The disadvantage of the compositing
technique is that the temporal resolution is reduced from daily to
10 daily resolutions and it has a tendency to select pixels with
lower vegetation dryness (Chuvieco et al., 2005). The 10-day
revisit cycle of the SPOT VGT satellite might not be amenable
to operational fire risk assessment, but is sufficient for
evaluation of the fire risk assessment ability of satellite data
(Maki et al., 2004; Verbesselt et al., 2006b). Daily satellite data
from SPOT VGT, MODIS, AVHRR, and other satellite sensors
that offer a high temporal resolution can be used for operational
purposes once the performance of satellite time-series for
assessing fire risk has been fully evaluated. The SPOT VGT
pre-processing is described in detail in Verbesselt et al. (2006a).

2.3. In situ herbaceous FMC data

The herbaceous FMC data were measured on experimental
burn plots (EBP’s), established for optimization of fire
management in the Kruger National Park (Biggs et al., 2003).
The EBP trial initiated in 1954 is one of few ongoing long-term
fire ecology research projects in Africa and aims to assess the
impact of different fire regimes (Govender et al., 2006). The
trial consists of 16 replicates, made up of four replicates in each
of the four major savanna woodland landscapes (Gertenbach,

1983): Colophospermum mopane shrubveld (Mopani), Sclero-
carya birrea/Acacia nigrescens savanna (Knob Thorn), Com-
bretum collinum/Combretum zeyheri woodland (Combretum),
and Lowveld Sour Bushveld (Sourveld) (Fig. 1). Each replicate
consists of 12 to 14 full plots with each plot covering
approximately 7 ha (i.e. 370180 m). The trial is described
in detail by Biggs et al. (2003). Prior to each experimental fire
on an EBP, the FMC of the grass sward was estimated according
to Eq. (1). The method for sampling herbaceous FMC combined
live plus dead fuels, and also combined different grass species
in order to represent the moisture contents that wild land fires
would encounter. Four spatially random samples of the grass
sward (approximately 100 g each) were placed in air-tight
bottles, weighed, and dried at 65 °C for four days to determine
dry and wet weight. Grass fuel loads are dominant on the EBP’s
and contribute 70—98% of the total fuel (Shea et al., 1996). The
majority of fires occurring in tropical grasslands, savannas, and
woodlands are primarily supported by herbaceous fuel load,
whereas the living trees typically do not burn (Govender et al.,
2006; van Wilgen et al., 2000). The herbaceous FMC data were
selected to evaluate satellite indices since monitoring the FMC
of the most flammable fuel was considered most important for
this study.

The in situ herbaceous FMC data, collected around midday
(10h00—-14h00 local time) and available from 1999 to 2002,
were selected during the period with the highest fire activity (i.e.
May to October). The daily variations in herbaceous FMC for
the study area are small when compared to the seasonal
variation of FMC (wet to dry season) where vegetation
transforms from live to dead vegetation (Personal Communica-
tion, Govender N., scientific services KNP). Daily variations
increase when vegetation senesces, since dead vegetation is
more dependent on dynamic atmospheric conditions (e.g.,
relative humidity) but remain smaller than the seasonal FMC
variation (Agee et al., 2002). Furthermore, FMC conditions
measured on the field plots would still be comparable to those at
satellite acquisition time since measurement around midday
minimizes daily FMC variation.

The sampling strategy of FMC data was similar to the nested
sampling strategy used by Chuvieco et al. (2004b) to relate
FMC data with coarse spatial resolution images. Nested
sampling is a common strategy for the scaling-up of field
measurements (Atkinson et al., 2000). The sampling involves
collecting data from plots at different levels of details, e.g. plot
and replicates stratified per major landscape type, while
acknowledging the convenience of working with homogeneous
areas for calibration purposes (Fig. 1). Firstly, the KNP is
covered mainly by savanna woodland on very gentle slopes
(Scholes et al., 1996). No agricultural practices are carried out
since it is a protected area, and temporal changes of 10-daily
imagery therefore are associated with seasonal vegetation trends
rather than crop variations. Secondly, field measurements of
EBP’s could be considered as representative of the temporal
variation of FMC for large plots, since no abrupt spatial changes
in climatic variables (e.g. temperature, rainfall) occurred in the
study area (van Wilgen et al., 2000). The FMC measurements
consequently can be coupled to coarse spatial resolution
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satellite images (Chuvieco et al., 2004b). An average FMC
value per replicate and date was derived since FMC data from
the EBP trial were available for one to three plots (4 to 12
random FMC samples) per each replicate and date.

Satellite indices were derived for each 10-daily period of
available S10 SPOT VGT data and concurrent FMC data by
selecting pixels in 3 x 3 pixel windows centered at each of the
replicates (Fig. 1). The median satellite index value of the 9
pixel-window was retained instead of single pixel index
values since it is less affected by extreme values, and
therefore is less sensitive to potentially undetected data errors.
It was assumed that the effect of the experimental burns after
each FMC measurement was reduced as a result of the
maximum NDVI compositing (MVC) technique and the
sampling strategy. Firstly, pixels do not have a maximum
NDVI after an EBP burn due to the burning of biomass and
therefore are not selected by the MVC technique (van
Leeuwen et al, 1999). The reduced biomass due to a
previous fire also could not produce a lower NDVI value
since FMC samples on a specific EBP were never repeated
within a year. Secondly, the influence of the burn on the
biomass and vegetation moisture condition measured by the
satellite sensor is minimal since the size of an actual EBP (i.e.
370 % 180 m) is small compared to the 1 x 1 km sample size of
the selected median value used for derivation of remotely
sensed vegetation indices.

3. Methodology

In this section the methods to derive the VDI, IVDI, and
ARND firstly are explained. Secondly, the methodology to
analyze the correlation of selected satellite indices (NDVI,
NDWI, VDI, IVDI, and ARND) with in situ herbaceous FMC is
described.
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3.1. Vegetation indices related to FMC

3.1.1. VDI

Information on the quantity of water and leaf material per
unit area is necessary to estimate FMC or vegetation dryness at
canopy level (Maki et al., 2004). Ceccato et al. (2002) have
shown that NDWI is related to EWT or the quantity of water per
unit area in savanna ecosystems. Carlson and Ripley (1997), on
the other hand, reported findings that LAI, as an approximation
of leaf quantity per unit area (Maki et al., 2004), was related to
NDVI. Fig. 2 illustrates the scatter plot of NDVI and NDWI
values (a) during the dry season periods (May—September) and
(b) for the whole period from 1998 to 2003. The scatter plots
indicate that maximum and minimum water contents per unit
area (NDWI) are associated with leaf quantity per unit area
approximated by NDVI. Maki et al. (2004) illustrated that this
feature is similar to the water deficit index (WDI) (Moran et al.,
1994; Vidal & Devaux-Ros, 1995). The WDI is an index that
indirectly estimates FMC per leaf quantity with the surface
minus air temperature difference (75— 7). A simplified WDI,
based on an empirical parameterization of the relationship
between T and NDVI, was suggested by Sandholt et al. (2002)
to estimate surface moisture status of a savanna ecosystem in
Senegal. The VDI, in contrast, directly estimates FMC per
NDVI using NDWI (Maki et al., 2004). Fig. 3a illustrates the
theoretical trapezoidal shape and the definition of the limits, i.e.
dry and wet edge, used to derive the VDI:

AC
VDI=1-—
AB

(4)
where AC and AB are the distances represented on Fig. 3a,
between the left (dry conditions) and right (wet conditions)
limits of the trapezoid. Vertices n (n=1, 2, 3, 4) in Fig. 3a are

(@)

o
o

NDVI
0.6 0.8

0.4

0.2

(b) —

NDVI

08

0.6
1

0.4

0.2

T T T
0.0 0.2 0.4

NDWI

T T
-04 -0.2

T T T
0.0 0.2 0.4

NDWI

T T
-0.4 -0.2

Fig. 2. Stable dry and wet edges (- - -) representing the spatial and temporal range in NDVI/NDWI 2-dimensional space. Thirty random pixels per sample unit (Fig. 1)
were used to select data during the dry season (May—September) (a) or the whole year (b) from 1998 to 2003. The dry and wet edges (- - -) are visualized on the left and

right hand side of the data, respectively.
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NDVI

(b)

iRVI

NDWI

NDWI

Fig. 3. The theoretical trapezoidal and triangular shape resulting from (a) the NDVI and NDWI and (b) the iRVI and NDWI continuum to derive VDI and improved
VDI (IVDI), respectively. The VDI of point C is given by 1-AC/AB as shown in Eq. (4) and the IVDI of point C’ is given by 1-A’C’/A’B’, as shown in Eq. (5), where
(1) indicates rich vegetation and poor water, (2) rich vegetation and rich water, (3) poor vegetation and poor water, and (4) poor vegetation and rich water.

rich vegetation and poor water, rich vegetation and rich water,
poor vegetation and rich water, and poor vegetation and poor
water, respectively. The slope and intercept of the dry and wet
edge were obtained using least squares linear regression of the
minimum and maximum NDWI values, respectively, for small
intervals of NDVI extracted in the NDVI/NDWI space
(Sandholt et al., 2002). Verstracten et al. (2005) illustrated
that this method performed best after comparison of several
sorting and selection methods to estimate the boundaries of the
‘T/Surface Albedo’ space, which is similar in shape to the
NDVI/NDWTI feature space.

Additionally, care must be taken when deciding on the
temporal and spatial selection of satellite data to derive the dry
and wet limits of the NDVI/NDWI space. Firstly, 30 random
pixels per sample unit were selected in this study to represent
the spatial variation in NDVI and NDWI in the study area from
1998 to 2003 (Fig. 1) (Verbesselt et al., 2006a). Distinctly more
outliers were present when all pixels in the study area were
used, which made the accurate estimation of upper and lower
boundary unreliable. Similarly, Sandholt et al. (2002) illu-
strated that estimation of the dry and wet edges in the Ts/NDVI
space was difficult due to atmospheric effects and cloud
screening. Secondly, Fig. 2a illustrates that when only data
during dry seasons from 1998 to 2003 were selected, the
maximum water content line was underestimated when
compared to Fig. 2b where all the data from 1998 to 2003
were used. This could cause an underestimation of derived
VDI values and therefore all NDVI and NDWI values from
1998 to 2003 were selected in order to obtain a stable
maximum water content line.

3.1.2. IVDI

The improved VDI (IVDI) was proposed in order to
enhance herbaceous FMC monitoring in savanna ecosystems
by analyzing the iRVI/NDWI instead of the NDVI/NDWI
feature space. Fig. 4a and b illustrate the iRVI/NDWTI scatter
plot, which indicates that maximum and minimum water
contents per unit area (NDWI) were associated with the yearly

herbaceous biomass amount (iRVI). 30 random pixels per
sample unit were used to select data during the dry seasons
(May—September) (Fig. 4a) and the whole period (Fig. 4b)
from 1998 to 2003, similar to the methodology for derivation
of the VDI. Fig. 4a illustrates that when only data during dry
seasons from 1998 to 2003 were selected, the maximum water
content line was underestimated when compared to Fig. 4b
where all the data from 1998 to 2003 were used, similar to the
VDI method. This could cause an underestimation of derived
IVDI values and therefore all iRVI and NDWI values from
1998 to 2003 were selected in order to obtain a stable
maximum water content line.

A more triangular shape was observed in the case of the
iRVI/NDWI feature space as opposed to the trapezoidal shape in
the NDVI/NDWTI feature space (Fig. 4b). Other studies also
observed a triangular shape when a full range of leaf quantities
and vegetation moisture contents was represented in the data
(e.g. Carlson et al. (1995), Gillies et al. (1997), and Vidal and
Devaux-Ros (1995)). The iRVI/NDWI feature space shown in
Fig. 4b subsequently can be interpreted as the space represent-
ing the range in water content (NDWI) for each yearly amount
of herbaceous biomass (iRVI) per unit area (per pixel). The wet
edge in Fig. 4b illustrates that the water content increased with
the available herbaceous biomass per unit area. Conversely, Fig.
4b shows that a constant NDWI value represented the dry edge
for iRVI values from approximately 40 to 100. A full range of
NDWI values for iRVI values lower than 40 and higher than 100
was not available in this savanna ecosystem during the analysis
period. However, Fig. 4b illustrates that a minimum NDWI
value of approximately —0.4 was obtained for the majority of
iRVI values in the savanna ecosystem of the study area.

Feature space parameters were estimated on the basis of
pixels representing the entire range of surface moisture
contents, from wet to dry vegetated surfaces. The slope and
intercept of the dry and wet edges, similar to the VDI method,
were obtained using least squares linear regression of the
minimum and maximum NDWI values, respectively, for small
intervals of iRVI extracted in the iRVI/NDWI space. Fig. 3b
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Fig. 4. Stable dry and wet edges (- - -) representing the spatial and temporal range in iRVI/NDWI 2-dimensional space. Thirty random pixels per sample unit (Fig. 1)
were used to select data during the dry season (May—September) (a) or the whole year (b) from 1998 to 2003. The dry and wet edges (- - -) are visualized on the left and

right hand side of the data, correspondingly.

illustrates the theoretical shape and the definition of the limits,
i.e. dry and wet edges, used to derive the IVDI:

A'C’

(5)
where 4’C’ and A’B’ are the distances represented on Fig. 3b,
between the left (dry conditions) and right (wet conditions)
limits of the shape.

3.1.3. ARND

The ARND was selected in order to compare its capability
for monitoring in situ FMC with the vegetation indices (NDVI,
NDWI, VDI, and IVDI), since the ARND has been shown to
perform best as an index to predict local fire activity in the
study area (Verbesselt et al., 2006a). The ARND is a fire risk-
related index, based on the NDVI, specifically designed for and
applied to forested areas in the Mediterranean climate zone
(Illera et al., 1996; Sebastian-Lopez et al., 1991). The ARND is
derived as:

" NDVI;, ) — NDVI
ARND =
2 NDVI;,

i=1

(6)

where NDVI; is the NDVI value at time i. The temporal
evolution of the NDVI can be used to monitor fire risk because
a decrease in the NDVI is related to an increase in vegetation
stress and fire risk of herbaceous vegetation (Chuvieco et al.,
2003). Vegetation stress can be defined as any disturbance that
adversely influences growth (Jackson, 1986). This stress can be
due to many factors, one of which is a lack of water that
restricts transpiration, inducing closure of stomata and resulting
in less water evaporating from the leaf surface.

3.2. Correlation analysis with in situ herbaceous FMC

Ordinary least squares analysis (OLS) was used to analyze
the correlation between explanatory variables (NDVI, NDWI,
VDI, IVDI, and ARND) and in situ herbaceous FMC data.
Physical interpretation of index behavior became feasible by
taking non-linear behavior of the explanatory variables into
account (Verbesselt et al., 2006b). The explanatory variables
therefore were expanded into restricted cubic spline functions
(RCS), with a specific number of knots (Harrell, 2001). The
coefficient of determination (R*) was derived between extracted
satellite indices and in situ FMC data. The satellite vegetation
index with the highest R?-value was considered most suitable to
monitor FMC during the study period. The different correlation
coefficients () were transformed into a normalized distribution
using a Fischer z-transform to test whether the correlation
coefficient of the best method represented a significant
improvement over correlation coefficients of the other methods
(Dennison et al., 2005):

2 = 0.5In[(1+7)/(1 - r)] (7)
where r is the correlation coefficient. The difference between Z,
for two indices was calculated as:

Zr1 — Zp>
V(1 /(m =3)+1/(ny = 3))

where n is the number of samples and Z, and Z, are the
transformed values of index 1 and 2, respectively. The Z~values
were compared against the Z-value of the index with the
highest R? in order to verify whether the correlation coefficients
were significantly different (Verbesselt et al., 2006a). A one-

(8)




364 J. Verbesselt et al. / Remote Sensing of Environment 108 (2007) 357-368

Table 1
Results of correlation analysis between in situ herbaceous FMC data and remote
sensing vegetation indices (NDVI, NDWI, VDI, IVDI, and ARND)

FMC ~ Index R2 SEmodcl Pyariable Pnon—lincarily Z/NDWI - Zf P
NDVI 0.73 0.15 <0.01 0.59 0.04 0.43
NDWI 0.75 0.14 <0.01 0.03 / /
VDI 0.25 0.25 0.01 0.66 0.77 <0.01
IVDI 0.73 0.15 <0.01 0.05 0.04 0.43
ARND 0.60 0.18 <0.01 <0.01 0.29 0.12

where R is the coefficient of determination, SEqe is the residual standard
error of the model, Pyl the significance of the variable in the model,
Pron-lincarity the significance of non-linearity in the model, Z, the Fisher
z-transformation score, and p the significance of the one tailed #-test (n=37).

tailed #-test was used to determine whether Z was significantly
positive. A significant Z-value indicated a significantly stronger
correlation for the index with the highest correlation coefficient.

4. Results

The results of the correlation analysis of the selected indices
with in situ herbaceous FMC are presented in Table 1. The
explanatory variables were expanded into restricted cubic
spline functions (RCS), with three knots to account for the non-
linear behavior between indices and FMC data. Three knots
were used in order to prevent over-fitting of the data, since
only 37 measurements were available. This approach was used
in all the fitted OLS regression models to facilitate comparison
of results, while accounting for similar amounts of non-
linearity (Harrell, 2001).

Table 1 shows that the selected index variables were
significantly related to FMC at a 95% confidence interval.
The correlation coefficient-values () of IVDI, NDVI, ARND
did not differ significantly (p>0.10) from the r-value of NDWI,
whereas the VDI value did differ significantly from NDWI
(»<0.01) (Table 1). Harrell (2001) stated that the use of plots is
the best way to present results from fitted RCS functions. Fig. 5
illustrates the results of the OLS regression model between
FMC and selected indices as explanatory variables. An
approximately bi-modal distribution is shown in the scatter
plots (a, b, d, and ¢), where values are clustered in low (<0.5)
and high (>0.6) FMC groupings (Fig. 5). Furthermore, the
NDWI (p=0.03), IVDI (p=0.05), and ARND (»<0.01) in Fig.
5b, d, and e illustrate a significant non-linear behavior. Table 1
and Fig. 5a, ¢ contrarily show that the NDVI and VDI were
linearly related to the herbaceous FMC at a 95% confidence
interval (p=0.59 and 0.66, respectively). Additionally, the VDI
demonstrated a weak but positive correlation, whereas the IVDI
showed a negative and strong correlation with in situ
herbaceous FMC (Fig. 5c and d).

5. Discussion

The discussion was divided into two main sections, namely
(1) correlation analysis of the selected indices with in situ
herbaceous FMC data, and (2) the use of these indices for fire
risk assessment.

5.1. Correlation analysis with in situ herbaceous FMC

The transition from wet to dry savanna vegetation occurs fast
(approximately 1-2 months), which explains the approximately
bi-modal distribution, along with the fact that FMC measure-
ments were not exported continuously during the dry season.
The data of low and high FMC groups were not analyzed
separately, since the objective of this study was to evaluate the
potential of remote sensing to assess herbaceous FMC during
the complete dry season. The significant coefficients of
determination in Table 1 (p<0.05) indicate that remote sensing
can be used to monitor herbaceous FMC of vegetation samples
with increasing proportion of dead/dormant versus live
vegetation towards the end of the dry season. These results
corroborated the findings of Dilley et al. (2004) who obtained
accurate FMC estimations with the NDVI derived from the
NOAA-AVHRR sensor over the complete curing duration of
three grassland sites in Australia.

Table 1 indicates that the IVDI, derived from the iRVI/NDWI
feature space, was correlated stronger than VDI with the
herbaceous FMC (R*=0.73 versus 0.25) (Table 1). Furthermore,
Fig. 5c illustrates a positive correlation between VDI and FMC,
which is against expectations since the VDI is a measurement of
vegetation dryness and should exhibit an inverse relationship
with FMC. An accurate FMC-VDI model fit was negated by the
low sensitivity of VDI to FMC (R*=0.25). These findings
corroborated the hypothesis that the iRVI/NDWI feature space,
used to derive the IVDI, was more appropriate for monitoring
vegetation moisture dynamics than the NDVI/NDWI space. The
NDVI and NDWI values were highly correlated (Fig. 2a, b) and
confirmed the earlier findings of Ceccato et al. (2002). NDVI is
indirectly related to the herbaceous FMC since NDVI is related
to chlorophyll content of leaves or LAI (Chuvieco et al., 2004b),
which can be assumed proportional to moisture content or
degree of curing (Hardy & Burgan, 1999). It can be concluded
that NDVI does not contain extra information, which is needed
to optimize FMC monitoring with NDWI in savanna ecosystems
dominated by an herbaceous layer.

The IVDI needs to demonstrate a distinct improvement for
monitoring FMC when compared to NDVI or NDWI, since the
derivation of NDWI or NDVT is less complex than the derivation
of IVDI. Maki et al. (2004) did not compare the abilities of VDI
and NDVI or NDWI to monitor FMC. This study illustrated that
the IVDI exhibited significant potential to monitor herbaceous
FMC, although the IVDI did not offer an improvement when
compared to NDWI or NDVI in savanna ecosystems (Table 1).
The use of one index to estimate FMC, however, can be regarded
as an inflexible approach, since it assumes that only one variable
is required for estimation, which is rarely the case (Verstracte &
Pinty, 1996). For example, FMC also can be estimated by
inversion of radiative transfer models which simulate EWT and
dry matter content (DMC) and can be expressed as the ratio of
EWT and DMC (Riafio et al., 2005). Further research is
necessary to evaluate and improve the monitoring of leaf
quantity using satellite-derived indices towards optimization of
the VDI-concept. The VDI could be improved by derivation of
an iRVI that accounts for the influence of biomass decay during
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Fig. 5. The OLS regression curves (—) between FMC as dependent variable and (a) NDVI, (b) NDWI, (c) VDI, (d) [VDI and (¢) ARND as explanatory variables. The
dotted lines (- - -) indicate the upper and lower borders of the 95% confidence interval (n=37).

dry season such that the link with FMC is optimized, since a
decrease in herbaceous biomass is expected during the drought
period (Scholes et al., 1996).

The NDWI and IVDI in Fig. 5b and d illustrate a significant
non-linear behavior at low FMC values (Table 1). Table 1 and
Fig. 5a contrarily show that the NDVI was linearly related to the
herbaceous FMC at a 95% confidence interval (p=0.59). Stow
et al. (2005) indicated that the visible atmospherically resistant
index (VARI) (Gitelson et al., 2002), which is based on green,
red, and blue spectral regions of the MODIS sensor, may be less
sensitive than NDWI to spatial variation in vegetation cover
fractions and background reflectance. Dennison et al. (2005)
compared the ability of NDVI and NDWI to monitor FMC in a
shrubland ecosystem and indicated that NDWI is less sensitive

than NDVI to moisture changes in vegetation containing small
amounts of water. Herbaceous fuels can be considered as dead
fuels when the FMC is below 30% (Carlson & Burgan, 2003).
The higher degree of scatter for NDWI and IVDI at low FMC
values when compared to NDVI, consequently, could be
explained by the fact that the SWIR spectral region is (1)
more sensitive to background reflectance or (2) less sensitive to
FMC variation when vegetation is dead, when compared to the
red spectral region. Additional research efforts are needed to
verify this hypothesis for vegetation canopies where the
influence of soil and dead fuels complicate the estimation of
FMC from satellite data. These findings also indicated that the
evaluation of the influence of dead fuels in FMC samples
became feasible by taking non-linear behavior of the
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explanatory variables into account. The use of thermal satellite
measurements (e.g., surface temperature) furthermore could
improve the monitoring of FMC during a dry season because
surface temperature is indirectly related to weather parameters
relevant to dead FMC variations (e.g., air temperature) (Camia
et al., 2003). However, the ability of remotely sensed indices to
monitor FMC dynamics at low FMC values only is required for
specific fire behavior models, whereas the ability to monitor
seasonal FMC variation is essential for regional fire risk models
(Pyne et al., 1996). The ability to monitor FMC variation during
the dry season was higher for NDWI than NDVI with R*-values
of 0.75 and 0.73, respectively (Table 1). These results
corroborated the findings of Dennison et al. (2005) and
Chuvieco et al. (2002) who illustrated that NDWI had higher
R*-values than NDVI for grass- and shrublands. The r-values of
NDVI and NDWI, however, did not differ significantly, which
can be explained by the fact that NDVI in grassland ecosystems
is related to FMC (Hardy and Burgan, 1999; Paltridge & Barber,
1988). Dilley et al. (2004) furthermore illustrated that FMC
estimates based on NDVI in grassland ecosystems are site
dependent and vegetation specific. The NDWI consequently is
more appropriate for integration in fire risk or fire behavior
(e.g., fire intensity) models, because NDWI is not vegetation
specific and has been shown to exhibit higher correlations with
in situ FMC data (Table 1).

The ARND also was significantly non-linearly related to the
herbaceous FMC (R*=0.6) and the r-value did not differ
significantly from the r-values of NDVI, NDWI, and IVDI, as
shown by the Fisher z-transformation scores (Table 1). Fig. Se
shows that the ARND was not related strongly to low FMC
values, i.e. FMC <40%. This explains the decreased ability of
ARND compared to NDWI, NDVI, and IVDI (R*>0.7) to
monitor FMC. The poorer performance of ARND for low FMC
values was attributed to the fact that ARND is related to
vegetation stress and not FMC (Illera et al., 1996). Vegetation
stress is proportional to the decrease in FMC at the start of the
dry season. However, the decrease in FMC stagnates due to
water shortage and the protection mechanisms of vegetation,
while ARND and vegetation stress continues to increase as the
dry season progresses.

5.2. Fire risk assessment performance

Results in previous study indicated that ARND, although not
best suited for in situ FMC estimation (Table 1), performed best
in conjunction with iRVI (i.e. ARND+iRVI model) when
correlation to fire activity data was considered (Verbesselt et al.,
2006a). The ARND is an index related to vegetation stress and
has a different temporal behavior than NDVI, NDWI, and IVDI
(Chuvieco et al., 2003; Sebastian-Lopez et al., 1991). The
superior fire risk assessment performance of the ARND was
attributed to the temporal behavior of the index and its ability to
account for a decrease in fire activity at the end of the dry
season. It should be noted that remotely sensed indices with a
researched biophysical background are preferred for integration
in fire risk models (Carlson & Burgan, 2003). It has been shown
in this study that the NDWI was best correlated with in situ

FMC data, while Verbesselt et al. (2006a) have demonstrated
that the iRVI was best related to herbaceous biomass amount at
the end of the rain season. Govender et al. (2006) have shown
that fire intensity varies with fuel moisture content as well as
with fuel load in the savanna ecosystem of the Kruger National
Park. The combination of NDWI and iRVI, compared to the
ARND and iRVI, consequently is more suited for integration in
fire risk and behavior models since NDWI and iRVI correlated
best with in-situ data of FMC and biomass.

6. Conclusion

The ability of vegetation indices derived from SPOT VGT
data to monitor herbaceous FMC was evaluated in this study
using in situ herbaceous FMC for the savanna ecosystem of the
Kruger National Park, South Africa. The selected satellite
vegetation indices under evaluation were NDVI, NDWI, VDI,
IVDI, and ARND. The improved VDI (IVDI) was proposed to
enhance the monitoring of FMC dynamics in savanna
ecosystems by analysis of the iIRVI/NDWI feature space instead
of the NDVI/NDWI 2-dimensional space. The major conclu-
sions of this research were:

1. The use of iRVI, as an approximation of yearly herbaceous
biomass, improved the VDI (i.e., IVDI) by providing
information on total leaf quantity per unit area such that
the monitoring of FMC became feasible in savanna
ecosystems dominated by grasslands. However, further
research to improve FMC monitoring is necessary, since it
was illustrated that the VDI (R*=0.25) and IVDI (R*=0.73)
did not offer improvement when compared to the NDWI or
NDVI with R*-values of 0.75 and 0.73, respectively. The
IVDI could be improved by an iRVI that accounts for
biomass decay such that the link with total leaf material per
unit area is optimized.

2. The use of in situ herbaceous FMC data illustrated that the
ARND was not strongly related to FMC values (R*=0.6)
when compared to NDWI (R*=0.75). In the previous study
the ARND, however, demonstrated the highest ability to
assess fire activity in the study area which was attributed to
the temporal behavior of the index (Verbesselt et al., 2006a).
This study has shown that the NDWI can be used to monitor
FMC variations in savanna ecosystems during dry season
when dead fuels complicate the FMC estimation from satellite
data. The NDWI provides a spatial and temporal information
source of seasonal herbaceous FMC variations which can be
used to optimize fire risk and fire behavior models.

3. Further research is necessary in order to calibrate regression
models when monitoring FMC with satellite data for specific
study areas (e.g., Africa, Australia, America). Managers of
savanna or grassland areas consequently can manipulate fire
intensity by choosing the FMC based on maps derived from
satellite data, and by subsequent burns in areas with higher or
lower fuel loads.

Ongoing research is focusing on optimization of fire risk
assessment with satellite data in forest ecosystems.
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