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Abstract

Although a variety of hierarchical image segmentation procedures for remote sensing imagery have been published, none of them specifically
integrates remote sensing time series in spatial or hierarchical segmentation concepts. However, this integration is important for the analysis of
ecosystems which are hierarchical in nature, with different ecological processes occurring at different spatial and temporal scales. Therefore, the
objective of this paper is to introduce a multi-temporal hierarchical image segmentation (MTHIS) methodology to generate a hierarchical set of
segments based on spatial similarity of remote sensing time series. MTHIS employs the similarity of the fast Fourier transform (FFT) components
of multi-seasonal time series to group pixels with similar temporal behavior into hierarchical segments at different scales. Use of the FFT allows
the distinction between noise and vegetation related signals and increases the computational efficiency. The MTHIS methodology is demonstrated
on the area of South Africa in an MTHIS protocol for Normalized Difference Vegetation Index (NDVI) time series. Firstly, the FFT components
that express the major spatio-temporal variation in the NDVI time series, the average and annual term, are selected and the segmentation is
performed based on these components. Secondly, the results are visualized by means of a boundary stability image that confirms the accuracy of
the algorithm to spatially group pixels at different scale levels. Finally, the segmentation optimum is determined based on discrepancy measures
which illustrate the correspondence of the applied MTHIS output with landcover–landuse maps describing the actual vegetation. In future
research, MTHIS can be used to analyze the spatial and hierarchical structure of any type of remote sensing time series and their relation to
ecosystem processes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The development of effective methodologies to analyze time
series of satellite imagery is one of themost important issues in the
understanding of temporal dynamics of vegetation cover
(Bruzzone et al., 2003). The temporal component, integrated
with the spectral and spatial dimensions, provides essential
information on ecological systems and vegetation dynamics.
However, advanced analysis methods are crucial for the proper
exploration of that information; certainly with the ever increasing
amount of time series data. Several methods and algorithms have
already been developed based on satellite-based biophysically
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meaningful variables, e.g. the Normalized Difference Vegetation
Index (NDVI) whose behavior follows annual cycles of
vegetation growth (Running et al., 1994). These applied methods
include Principal Component Analysis (PCA) (Anyamba &
Eastman, 1996; Eastman & Fulk, 1993; Gurgel & Fereira, 2003),
development of phenological metrics (Jönsson & Eklundh, 2004;
Lee et al., 2002; Reed et al., 1994; Verbesselt et al., 2006), change
detection (Coppin et al., 2004), and harmonic or Fourier analysis
(Andres et al., 1994).

The fast Fourier transform (FFT) has shown to be particularly
useful for NDVI time series analysis to describe and quantify
fundamental temporal characteristics, since the noise-affected
NDVI time series are decomposed into simpler periodic signals
in the frequency domain. By performing analysis in the
frequency domain, a distinction can be made between frequency
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terms with daily frequencies, related to atmospheric and cloud-
contamination effects, and specific frequency terms related to
vegetation in dynamic ecosystems (Evans & Geerken, 2006;
Jakubauskas et al., 2001, 2002; Juarez & Liu, 2001; Olsson &
Eklundh, 2001). Azzali and Menenti (2000) and Moody and
Johnson (2001) have used the inter- and intra-seasonal periodic
signals successfully in classification procedures to map
vegetation–soil–climate units. These studies revealed typical
temporal characteristics of vegetation complexes, but they are
per-pixel approaches based on clustering procedures of
temporal properties of individual pixels. Consequently, they
do not take into account the spatial or hierarchical context of
the data. As such, they ignore the information in the spatial
domain and fail to aggregate the temporal information into
hierarchical regions at different scales. These concepts are
important since ecosystems are hierarchical in nature, with
different ecological processes occurring at different spatial and
temporal scales (Handcock & Csillag, 2004; Hay et al., 2003).
For example, macro-ecological characteristics, e.g. climate,
will have coarse spatial regional effects, while more localized
characteristics, e.g. weather, create patterns of variability at
finer spatial scales. In this context, ecological systems can be
perceived as nested patch hierarchies, where patterns and
dynamics at the focal scale are products of the potential
behaviors of components at lower levels (smaller scales), and
are bound within the environmental constraints imposed by
higher levels (larger scales) (Woodcock & Harward, 1992; Wu
& Loucks, 1995).

Image segmentation methods provide a valuable alternative
to the conventional per-pixel classification methods, since they
consider the spatial context. Segmentation methods partition a
study area into adjoining clusters of pixels, called segments or
regions, based on similarity or dissimilarity of their single or
multiple-layer pixel values (Stuckens et al., 2000). Mathemat-
ically, most of these methods operate on the principle of
minimizing the within-region variance, or other measures of
internal homogeneity (Beaulieu & Goldberg, 1989). Different
approaches are commonly used for this principle, ranging from
threshold techniques, and boundary techniques, to region-based
techniques and hybridized approaches (Fan et al., 2001). The
advantages of the segmentation approach over classical per-
pixel procedures are multiple. Firstly, they allow quantification
of spatial heterogeneity within the data at various scale levels.
Such measures can indicate spatial complexity, variability, and
fragmentation, which can have a significant influence on the
rate, character, and magnitude of ecosystem processes.
Secondly, the delineation of homogeneous patches is possible
and involves a certain spatial generalization. This reduces the
effect of local spatial heterogeneity that often masks larger
spatial patterns (Tilton & Lawrence, 2000). Thirdly, an explicit
hierarchal structure can be implemented between segments at
different spatial scales (Woodcock & Harward, 1992). The
hierarchical structure provides insight into the functional
ecology of ecosystems, since it presents the study area as a
nested patch hierarchy. This means that the study area is divided
into spatial sets corresponding to coarse regions. These coarse
sets are subdivided into subsets corresponding to region
subparts at smaller scales. This hierarchy can be represented
by a tree where the segments at the lower level are joined to
form segments at higher levels.

Although a number of hierarchical image segmentation
procedures for remote sensing imagery have been published
(e.g. Baatz & Schäpe, 2000; Tilton & Lawrence, 2000), none of
them specifically incorporates similarity of temporal informa-
tion in the algorithm. The objective of this paper is consequently
the introduction of a multi-temporal hierarchical image
segmentation (MTHIS) methodology that generates a hierar-
chical structure of segments based on spatial similarity of
temporal profiles. MTHIS employs the similarity of FFT
components to assess that similarity of temporal profiles.
Application of the MTHIS consequently allows hierarchical
clustering of image time series into spatio-temporal segments at
numerous scales based on specific periodic patterns. This will
provide insight in the hierarchical spatio-temporal structure of
ecosystem processes, e.g. the relation of different landcover
properties at various spatial scales, the relationship between
climate-weather and vegetation phenological variability.

In this paper, the MTHIS methodology is applied on NDVI
time series of South Africa to demonstrate the concept. Section
2 presents the study area and satellite data, while the MTHIS
methodology is described based on its underlying theoretical
concepts in Section 3. Since MTHIS is a general methodology
that can be applied to any image time series, a specific MTHIS
protocol for multi-temporal NDVI image series is introduced in
Section 4. This protocol serves to select the relevant temporal
characteristics that describe the majority of spatio-temporal
variation in the original NDVI data (4.1), incorporates
effective application (4.2) and visualization (4.3), and allows
to extract the segmentation optima that relate to ecological
processes occurring at different scales (4.4). Finally, the results
of the MTHIS protocol are presented in Section 5 and the
advantages and drawbacks of the methodology are discussed in
Section 6.

2. Data description

2.1. Study area

The proposed methodology was tested on the area of South
Africa, Swaziland and Lesotho, which approximately encom-
passes the geographic region between latitudes 21°S and 35°S
and longitudes 33°Wand 16°E. The elevation ranges from sea-
level to more than 3300 m, while the rainfall varies from
almost zero to more than 3000 mm in mountainous areas.
Rainfall regimes are defined as winter rainfall in the west to
strong summer rainfall regimes in the northeastern and
northern parts of the study area. The vegetation in the study
area is characterized by 68 different vegetation types (LR) as
described by Low and Rebelo's Vegetation Map of South
Africa, Lesotho and Swaziland (Low & Rebelo, 1996) and is
illustrated in Fig. 1a. These broad vegetation types are
principally identified by their vegetation structure, ecological
processes and occurrence of important plant species. If the
factor of human influence is also considered, 31 landcover–



Fig. 1. a) The major vegetation types for South Africa, Lesotho and Swaziland exemplifying the spatial variation of vegetation structure, ecological processes and
occurrence of important plant species. For more detailed information on the legend see Low and Rebelo (1996); b) Landcover classification for South Africa, Lesotho
and Swaziland as an in indication of the spatial variation in landcover–landuse types. For more detailed information on the legend see Thompson (1999).
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landuse types, ranging from natural vegetation to urban built-
up land, can be distinguished as described by the National
Land Cover Map of South Africa (LC) (Fig. 1b). This map was
developed by the Council for Scientific and Industrial Research
(CSIR) and the Agricultural Research Council (ARC) (Thomp-
son, 1999).



Fig. 2. Illustration of the Fk-distance for the kth frequency FFT components of
two segments, represented by their mean, p and q. Fk

c and Fk
s are amplitudes of

the cosine and sine waves in rectangular notation, while Ak and ϕk are the
amplitude and phase in polar notation, respectively. Ak

p−q is the distance between
points p and q used in the Fk-distance criterion.
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2.2. Satellite data

Ten-daily NDVI image composites (S10) were acquired
from the SPOT-VEGETATION (VGT) sensor. This low spatial
resolution product (1 km) provides a very effective source for
the examination of intra- and inter-annual vegetative variations,
given their temporal resolution. Preprocessing of the data was
performed by the Vlaamse Instelling voor Technologisch
Onderzoek (VITO, Mol, Belgium) in the framework of the
Global Vegetation Monitoring (GLOVEG) preprocessing chain.
It consisted of the Simplified Method for Atmospheric
Correction (SMAC) (Rahman & Dedieu, 1994) and compos-
iting of daily images at ten-day intervals based on the Maximum
Value Compositing (MVC) criterion (Holben, 1986). The final
data set consisted of 180 ten-daily, 1 km resolution S10
composites for the period July 1998 to July 2003.

3. MTHIS methodology

The presented MTHIS methodology consists of a hierarchi-
cal segmentation approach to spatially cluster pixels based on
their similar temporal behavior. Temporal similarity is the
fundamental working principle of the MTHIS and is defined as
the similarity of the FFT components. The MTHIS, conse-
quently, contains two main phases: i) decomposition of the
original image time series in FFT components, and ii)
hierarchical segmentation based on the similarity of FFT
components.

3.1. Fast Fourier transform

In the first step, the original image time series are decomposed
in periodic signals using the fast Fourier transform (FFT). The
FFT transforms a complex signal into a set of scaled sine and
cosine waves that can be summed to reconstruct the original
signal. The mixed radix FFT (Singleton, 1969) was used in this
study, since it is a computationally fast variant of the discrete
Fourier transform (DFT). This FFT can be used to transform any
equidistant discrete time series f(t) and is given by:

Fk ¼ 1
N

XN�1

t¼0

fte
�2pikt=N ð1Þ

where t is an index representing the sample number, ft is the time
series value at moment t, k is the frequency of the FFTcomponent
F, and N is the number of samples in the time series. Eq. (1)
contains a real and imaginary part, but can be decomposed into a
set of cosine (real part) and sine (imaginary part) waves in
rectangular notation based on Euler's equation (James, 1994):

Fc
k ¼

1
N

XN�1

t¼0

ðftcosð2kkt=NÞÞ ð2Þ

Fs
k ¼

1
N

XN�1

t¼0

ðftsinð2kkt=NÞÞ ð3Þ
where Fk
c and Fk

s are the cosine and sine parts, respectively. The
frequency k of the FFT components accordingly designates the
number of cycles the sine and cosine waves complete over the
time series (e.g., the fifth term completes five cycles over five
years) and defines the periodicity or time between consecutive
sine and cosine waves (period=1/k). An alternative polar notation
exists wherein the time series f(t) is reconstructed using only
cosine waves with unique amplitudeAk and phase shiftϕk (Smith,
1999):

f ðtÞ ¼ A0 þ
XN�1

k¼1

Akcosð2kkt þ /kÞ ð4Þ

with

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fc2
k þ Fs2

k

q
ð5Þ

and

/k ¼ arctan
Fc
k

Fs
k

� �
: ð6Þ

In the polar notation Ak and fk jointly describe the kth
frequency FFT component as one cosine wave in the frequency
domain, whereas the sum of the cosine waves represents the
original time series of each pixel. This representation as unique
cosine wave allows to discriminate between processes that
contribute to the original time series signal with different
periodic patterns. Additionally, the influence of these processes
on the signal can be quantified.
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3.2. Hierarchical segmentation based on FFT component
similarity

In the second step, the FFT components are imported in the
hierarchical segmentation approach. The principle of MTHIS is
analogous to classical hierarchical image segmentation which
uses bottom-up region-merging techniques, e.g., eCognition
Fig. 3. Illustration of the difference vector: a) Four NDVI time series of neighboring o
reference unit (LC I), while the dot-dashed time series originate from a different r
segments in (a). The line types respond to the line types of (c) and (d). Solid lines are
when different LCs are compared; c) Difference vectors f p−q (t) for the time series of
the FFT components of the difference vectors of (c).
(Baatz & Schäpe, 2000) or Recursive Hierarchical Segmenta-
tion (RHSEG) (Tilton & Lawrence, 2000). MTHIS starts with
an initial partitioning of the image data into initial segments,
which is an assignment of each image pixel to a separate region.
Next, a segmentation run is launched in which each segment is
selected once in a complete random sequence and compared
with its spatially adjacent segments for similarity based on a
ne-pixel segments are shown. The time series with solid lines correspond to one
eference unit (LC II); b) Schematic overview of relative location of one-pixel
used for the difference between pixels of similar LC, while dot-dashes are used
(a); d) Fk-distance as a function of the frequency. The Ak

p−q is the amplitudes of
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dissimilarity criterion. This dissimilarity criterion provides a
measure S that indicates the dissimilarity of objects. The pair
of compared segments that is most similar (i.e., the minimum
S) is subsequently merged to form a larger region if their
dissimilarity S remains under a user-defined similarity
threshold value T. In this merge, the characteristics of the
original segments are replaced by the mean of their original
pixels. After this merge, the next segment is selected in the
random sequence. If the segment has no neighbors where SbT,
the process is halted for that segment. When each segment is
handled once in the segmentation run, a new segmentation run
is started for each segment. This process of segmentation runs
continues until all merging possibilities end (SNT for all
segments). The entire process is repeatedly iterated for a range
of increasing similarity threshold values T, until it results in a
hierarchical set of spatio-temporal segments of the same image
time series at different levels of detail. The bottom-up
approach establishes hierarchy, since segments at coarse levels
of detail are produced from simple merges of segments at finer
levels of detail.

The classical hierarchical image segmentation approach
was modified in this paper by introducing the Fk-distance
criterion. This criterion employs the Euclidian distance
between the FFT components of the same frequency as
measure of similarity. The dashed line Ak

p−q in Fig. 2 illustrates
the Fk-distance for the kth frequency FFT component of two
segments, represented by their mean, p and q. The Fk-distance
incorporates both parameters that represent the FFT compo-
nent, Ak and ϕk, respectively, into one dissimilarity measure
that depends on the amplitude and phase difference between
the FFT components. Consequently, it describes both differ-
ences in amplitude and phase between the segments.
Moreover, the Fk-distance differs from classical approaches
that quantify the difference in amplitude or phase separately,
since FFT components are not additive in polar notation. The
Fk-distance mathematically corresponds to subtracting the
NDVI time series of neighboring segments, f p(t) and f q(t),
respectively, for each observation in the temporal sequence
and using the amplitude of the resulting difference vector f p−q

(t):

Ap�q
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFc

k ðpÞ � Fc
k ðqÞÞ2 þ ðFs

kðpÞ � Fs
kðqÞÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fc
k ðp� qÞ2 þ Fs

kðp� qÞ2:
q

ð7Þ

Ak
p−q directly includes spatial context in the MTHIS

methodology as the NDVI times series of neighboring segments
are subtracted before the amplitude of difference vector f p−q (t)
is calculated. Insertion of the Fk-distance in the classical
hierarchical image segmentation approach results in the follow-
ing dissimilarity criterion S:

S ¼
XN�1

k¼0

wkA
p�q
k ð8Þ

where Ak
p−q is the Fk-distance between the mean FFT

components of the pixels of segments p and q respectively,
and wk is the weight of the kth frequency FFT component.
Modification of the weights allows to enhance (high wk) or
diminish (low wk) the influence of each component on S and to
accentuate specific components in the segmentation.

The Fk-distance criterion is illustrated in Fig. 3. Fig. 3a
shows the NDVI time series of four neighboring one-pixel
segments located in different landcover–landuse types (LC).
The difference vectors of the time series are plotted in Fig. 3c,
whereas Fig. 3d shows the amplitudes Ak

p−q of the difference
vectors. The latter represents the Fk-distances between the
FFT components of the segments used in the dissimilarity
criterion S. It clearly reveals three peaks for the Ak

p−q of
dissimilar LCs. The peak at the first frequency component,
for example, corresponds to one amplitude cosine wave over
the studied time frame (five years). It can be interpreted as a
trend term that reveals the tendency differences between the
compared time series. The peak at the 5th frequency
component relates to a sine wave that completes five waves
over the studied time frame. It reflects the annual difference
of the time series, i.e., the annual cycle for each of five years
and is called the first harmonic. The third peak at the 10th
frequency component corresponds to the second harmonic.
These harmonics originate from the FFT property that
periodic signals of frequency k can be decomposed in cosine
waves of frequencies k, 2k, 3k, etc. However, the curves of
the similar time series in Fig. 3d do not show these peaks
clearly.

In other words, the difference between two similar NDVI
time series is almost constant with a mean of zero. The
difference of dissimilar time series (dot-dash lines) on the other
hand, presents a clear annual difference, which is evident in
Fig. 3c. The use of Ak

p−q as dissimilarity criterion now allows
discrimination between such similar and dissimilar time series
and consequently enables the creation of a hierarchical structure
of spatio-temporal segments.

4. MTHIS protocol

The MTHIS methodology can be applied to any image
time series. Daily or monthly NDVI time series of land
surfaces contain however strong systematic periodic patterns
related to vegetation features and nonsystematic high
frequent image noise caused by atmospheric and viewing
angle effects and cloud contamination (Azzali & Menenti,
2000). These characteristics specifically can be exploited in
MTHIS application to remove noise factors and enhance
vegetation specific information. As a result, a close agree-
ment can be expected between segmentation output and
ecological processes related to vegetation at different scales.
A specific MTHIS protocol for NDVI time series was
therefore applied on the VGT NDVI time series of South
Africa. The MTHIS protocol allows to select relevant FFT
components that describe the majority of spatio-temporal
variation in the original NDVI data, incorporates actual
segmentation and visualization, and assesses the optimal
MTHIS parameters for describing the ecological processes at
different scales.



Fig. 4. Logarithmic plot of the energy density spectrum describing how the energy (or variance) of time series is distributed over the frequency FFT components. The
0th and 5th frequency term express 95% and 3% of the total energy of all terms.
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4.1. Selection of FFT components

For time series with strong periodic patterns, such as the used
NDVI time series, few principal FFT components will explain
the majority of the variation in the time series. This allows a
reduction of the FFT components and can be used to remove
noise factors and enhance specific information. Consequently
meaningful and stable characteristics of time series can be used
in the MTHIS procedure. Moreover, the elimination increases
the computational efficiency of the segmentation approach
because fewer components have to be compared in Eq. (8). The
selection and identification of these relevant spatio-temporal
FFT components consisted of two steps. Firstly, the temporal
informational content of the FFT components was assessed by
the energy density spectrum (Ek) (Smith, 1999):

Ek ¼ A2
k

2k
: ð9Þ

The energy density spectrum describes how the energy (or
variance) of a time series is distributed according to frequency. It
allows the distinction of relevant periodic signals in the original
time series. Secondly, the spatial variability of the FFTcomponents
Fig. 5. The mean Fk-distance among sample pixels separated by lag h
was assessed by means of the Fk-distance as a function of the
segment lag distance. This measure is derived from the variogram
(see Garrigues et al., 2006) and quantifies the spatial heterogeneity
of the Fourier components using the amplitude of the resulting
difference vector Ak

p−q. The use of Ak
p−q allows to assess the spatial

variability that is directly included in the MTHIS methodology,
namely the amplitude of the difference vector, and that differs from
the classical spatial heterogeneity measures due to the non-
additivity of Fourier components in polar notation. Consequently, it
enables the distinction of FFT components with large spatial
variability for MTHIS application from components with uniform
spatial distribution. For this purpose, theFk-distance was calculated
between all possible pairs of 500 random sample pixels in the study
area and each pair was assigned a lag or distance interval class h:

gkðhÞ ¼
1

NðhÞ
XNðhÞ

i¼1

Ap�q
k ð10Þ

where γk (h) is the mean Fk-distance among sample pixels
separated by lag h,N (h) is the number of paired pixels in lag h, and
Ak
p−q is the Fk-distance between a pair of pixels p and q in lag h. γk

(h) consequently gives an indication of how similar the FFT
component is as a function of the lag distance.
=20 km for the kth frequency FFT components (k=0, 1,…, 10).



Fig. 6. a) Amplitude of the 0th frequency FFT component (average term; in color scale) and BSI overlay (in gray scale) for w0=1, w5=0 and T=0.005, 0.01,…, 0.14;
b) Amplitude of the 5th frequency FFT component (annual term; in color scale) and BSI overlay (in gray scale) for w0=0, w5=1 and T=0.005, 0.01,…, 0.14. BSI
values smaller than 0.2 are transparent. Zoom windows with a region subset are moreover provided.
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Fig. 7. Phase of the 5th frequency FFT component (annual term; in color scale) and BSI overlay (in gray scale) for w0=0, w5=1 and T=0.005, 0.01,…, 0.14. BSI
values smaller than 0.2 are transparent. A zoom window with a region subset is moreover provided.
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4.2. MTHIS application

After the selection and identification of relevant vegeta-
tion spatio-temporal FFT components, the actual MTHIS was
performed. The iterative process was conducted in repeated
runs by assigning different weights (wk=0, 0.1,…, 1.0) to the
FFT components in the dissimilarity criterion in Eq. (8) and
by varying the segmentation threshold values (T=0.005,
0.010,…, 0.14). The FFT components that represented limited
spatio-temporal variability in the original VGT time series
were discarded in the whole process by assigning their
wk=0.

4.3. MTHIS visualization

The results of the MTHIS runs were visualized using a
boundary stability image (BSI) (Lucieer & Stein, 2002). The
BSI shows the boundaries of different scale levels in one
image and, consequently, allows a visual comparison and
interpretation of segmentation boundaries and the segmen-
tation hierarchy. The BSI was established by calculating the
relative presence of the boundary at different threshold
levels. This was done by selecting the segment edge pixels at
each threshold level T. At step t these boundary pixels were
assigned the value 1 and non-boundary pixels the value 0
and were represented on a segment-boundary image It. This
resulted in a BSI, defined as:

BSI ¼ 1
Nt

XNt

t¼0

It: ð11Þ

The BSI contains values between 0 and 1, related to relative
presence of the boundary at different scale levels. Segment
boundaries with large BSI values are boundaries of coarse scale
segments that are detected at various threshold values T,
whereas small BSI values represent boundaries occurring only
at fine segmentation scales.

4.4. Assessment of segmentation optimum

The MTHIS methodology generates hierarchical segments of
homogeneous temporal properties at various scales. Application
of MTHIS on NDVI time series however allows additional
interpretation, since NDVI time series relate closely to phenolog-
ical characteristics of vegetation (Justice et al., 1985; Reed et al.,
1994). A close agreement can therefore be expected between
MTHIS segments of NDVI time series and ecological processes
that determine phenological characteristics. For example, agree-
ment can be assumedbetween theMTHIS output and the reference
maps that describe the vegetation characteristics at different scales



Fig. 8. Mean segment area as a function of the weights of the 0th and 5th
frequency FFTcomponents (w0 and w5; where w0+w5=1) and the segmentation
threshold T. The gray scale represents the log10 of the mean segment area. The
lines correspond to segmentation results with equal mean segment areas as LR
and LC, respectively.

515S. Lhermitte et al. / Remote Sensing of Environment 112 (2008) 506–521
(LR and LC see Section 2.1), because the interaction of soil,
physical environment, climate, and landcover–landuse defines the
phenological characteristics of vegetation. The agreement will be
maximal at a specific segmentation optimum where reference and
segmentation coincide at the pre-defined management scale of the
reference layer. The goal of this step in the MTHIS protocol is the
extraction of the different segmentation optima by discrepancy
measures that compare the segmented image with the reference
maps. This allows the assessment of the optimal threshold and
weight values and also provides quantitative indicators that estimate
the agreement of the segmentation optimumwith the referencemaps.

4.4.1. Thematic agreement
A commonly used discrepancy metric to quantify the

agreement of thematic maps is Cohen's Kappa coefficient
(Cohen, 1960). It requires thematic labeling of the MTHIS
output, which was done by assigning the zonal majority value of
the reference layer (the value that appears most often) to the
MTHIS output segments. Kappa coefficients (K̂) were calculated
succeedingly to assess the disparity between MTHIS and
reference segments:

K̂ ¼
N
Xr

i¼1

xii �
Xr

i¼1

ðxiþd xþiÞ

N 2 �Pr
i¼1

ðxiþd xþiÞ
ð12Þ

where r is the number of labels in the reference layer, xii is the
number of correctly assigned pixels, xi+ is the total number of
pixels classified as i, x+ i is the total number of pixels i in the
reference layer, and N is the number of pixels in the image. K̂
ranges from 0 to 1 indicating the percentage accuracy above
chance agreement. Because of the assignment of zonal majority
values of the reference layer, the Kappa coefficients overesti-
mate the absolute thematic accuracy. Nevertheless, Kappa
coefficients allow the relative comparison of geometric
correspondence between segmentation output and reference
layer, since high K̂ values can be expected when the agreement
between segmentation and reference is nearly perfect, whereas
the assignment errors in the zonal majority procedure signifi-
cantly would reduce the Kappa coefficient in cases where they
show imperfect agreement.

4.4.2. Boundary agreement
The Kappa coefficient, however, fails to correct for over-

segmentation that results in an over-estimation of thematic
correspondence. Thus, another agreement measure was applied
based on the accuracy of segmentation boundaries to correct
for this over-segmentation. The accuracy of the detected
boundaries was formulated by a boundary accuracy measure D
(B) that expresses the average distance measured in pixels
between a segment and reference boundary pixel (Delves et al.,
1992):

DðBÞ ¼
jB�M j þ

XB
b¼1

DðbÞ

B
ð13Þ
where b is a boundary pixel in the reference map, D(b) is the
shortest Euclidian distance measured in pixels between b and
any boundary pixel in the segmented image, and B and M are
the number of boundary pixels in the reference and segmented
image, respectively. For a perfect fit, D(B) equals 0, while
higher values indicate higher average distances measured in
pixels between segment and reference boundaries, and thus
higher discrepancies. The D(B) measure is corrected for over-
segmented objects by penalizing segmentation outputs with
high M values via |B−M|.

5. Results

The results of MTHIS protocol on the study area are divided
into three sections, namely i) the selection and analysis of the
FFT components that describe the majority of the spatio-
temporal variability, ii) the visualization of the MTHIS results
using the BSI, and iii) assessment of the segmentation optima of
MTHIS based on the thematic and boundary agreement in
comparison with the LR and LC reference layers.

5.1. Selection of FFT components

The energy density spectrum in Fig. 4 shows how the
variance of the original time series in the study area is distributed
across the FFT components. It reflects the importance of each
FFTcomponent to describe the original time series. The average
term is the termwith zero frequency or the overall meanNDVI of
the time series. The annual term is the term with frequency five
over five years and it is related to the annual growing patterns of
the time series. Both represent the largest part of the temporal
variability of the original time series. Together they describe
more than 98% of the variation in the logarithmic plot.
Contrarily, the FFT components with frequency above ten add
little information to the original VGT time series.



Fig. 10. Boundary accuracy measure D(B) as a function of the weights of the 0th
and 5th frequency FFT components (w0 and w5; where w0+w5=1) and the
segmentation threshold T. The lines correspond to segmentation results with
equal mean segment areas as LR and LC, respectively: a) D(B) with LR as
reference layer; b) D(B) with LC as reference layer and zoomed in on T≤0.05.
The X represents the segmentation optimum for each reference layer.

Fig. 9. Kappa coefficient as a function of the weights of the 0th and 5th
frequency FFT components (w0 and w5; where w0+w5=1) and the segmentation
threshold T. The gray scale represents Kappa coefficient of Eq. (12). The lines
correspond to segmentation results with equal mean segment areas as LR and
LC, respectively: a) D(B) with LR as reference layer; b) D(B) with LC as
reference layer.
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Fig. 5 presents the spatial variability (γk) of 0th to 10th
frequency FFT component that describe the largest part of the
temporal information in Fig. 4. It shows the spatial variability of
the Fourier components by means of the mean Fk-distance
among sample pixels separated by lag h and consequently
reflects the spatial variability that is directly included in the
MTHIS methodology, namely the amplitude of the difference
vector. It confirms the relevance of the average and annual term,
as the 0th and 5th frequency FFT components express the
largest part of the spatial variability for the MTHIS. These two
FFT components consequently were selected for further use in
MTHIS, as they clearly correspond to relevant periodic signals
in the original NDVI time series. The other terms reflect a
significantly smaller amount of the NDVI time series spatio-
temporal variability. Comparison of Figs. 4 and 5 also reveals
the distinction in spatio-temporal variability between the
average and annual term. The level of spatial variability of the
annual term (γ5) is approximately 60% of the level of spatial
variability of the average term (γ0) (Fig. 5).

The peak of the annual term, on the other hand, explains
considerably less of the variance of the original time series
(95% vs. 3%) in the logarithmic plot of the energy density
spectrum (Fig. 4). This means that the annual term contains
more spatial variation relative to the average term, since the
annual term shows a variation over space that is 40% lower,
whereas overall variation is considerably lower. This also
indicates that higher spatial variation should be apparent, which
implies more localized variability, less spatial correlation, and
finer spatial patterns, resulting in more speckled images.

The color scale in Fig. 6a–b displays the amplitude of the
average (A0) and annual term (A5), respectively. Comparison of
both figures reveals the characteristics of both FFT components.
The average term shows high overall variability ranging from 0
to 0.86 with coarse-smooth spatial patterns. Red colors indicate
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high five year mean NDVI values related to a high vegetation
cover, whereas the blue regions reflect low vegetation cover.
The forested areas in the northeastern part and in the eastern
coastal areas can clearly be delineated in this context, whereas
the dry Karoo areas in the northwest also can be detected. The
amplitude of annual term, on the other hand, presents only a
third of the overall variability (from 0 to 0.33), but contains finer
localized spatial patterns, resulting in a more speckled image.
The red tones in Fig. 6b are related to a pronounced annual
signal in the original time series, whereas the blue areas do not
show this clear annual variation. This explains why agricultural
and grassland regions in the southwestern and central-eastern
parts contain red colors. These areas vary annually from dry soil
or cured grass to high live vegetation content. Contrarily, the
forested areas show little annual variation, as they represent
regions with a high mean NDVI and little annual variation.

5.2. MTHIS visualization

Fig. 6a–b contains also the BSI output of two MTHIS runs
based on only the average term (w0=1 and w5=0) and annual
term (w0=0 and w5=1), respectively. The BSI boundaries are
plotted in gray scale on top of the colored amplitude maps and
reflect the relative presence of the boundary at different scale
levels. The darker BSI values are boundaries of coarse scale
segments that are detected at various threshold values T and
indicate the presence of the boundary at several hierarchical
Fig. 11. MTHIS segmentation optimum in comparison with the LC map after assigni
map, whereas the boundaries reflect the segmentation optimum after zonal majority
w0=0.6, w5=0.4, and T=0.01.
scale levels, while lighter values are indicators of boundaries
only occurring at small threshold values; non-boundary pixels
and BSI values below 0.2 are transparent. The BSI boundaries
effectively indicate how the study area is partitioned at
different hierarchical scale levels, since the segments with low
BSI values are subsets of the coarse regions with high BSI
values.

Additionally, the BSI gives an indication of the quality of the
MTHIS methodology, since it allows visual comparison with
the input FFT component images. This visual comparison
illustrates that boundaries of clearly visible objects (e.g.,
forested areas in the northeast of Fig. 6a or the agricultural
areas in the southwest of Fig. 6b) were identified at various
scale levels, while more subtle differences were only detected at
finer scales. This can be clearly seen in the zoom windows of
Fig. 6a–b. Another example is the distinction between summer
and winter rainfall regions that is detected at all scale levels in
Fig. 7. This figure illustrates the phase instead of the amplitude
of the annual term. The colors express the phase on the annual
term and describe the time of occurrence of the annual peak in
the original NDVI temporal profile, while the gray scale shows
the BSI. The BSI illustrates how the difference between summer
and winter rainfall is detected at all scale levels, while small
phase differences are only recognized at finer scale levels.

A closer view of the BSI images also reveals the influence of
threshold and weight values on the segment size. Small values
of T lead to small segments, whereas large T values result in
ng the zonal majority value of the LC map. The colors represent the original LC
assignment. The values for this MTHIS output are D(B)=1.10 and Kˆ=0.88 for
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large objects. The combination of weights and spatial variability
of the FFT components likewise will influence the segment size
as it will determine the intra-region similarity, S, before reaching
threshold T. This is confirmed in Fig. 8 where the mean segment
area is plotted as a function of the weights wk and segmentation
threshold T. It shows that the higher overall spatial variability of
the average term resulted in smaller segments for the same T
value. A logarithmic scale is used, since an exponential area size
can be expected for increasing T values as each merge in the
MTHIS approximately doubles the segment size.

5.3. Assessment of segmentation optimum

The agreement of the MTHIS output relative to the reference
layers is presented in Fig. 9 based on thematic accuracy values
K̂. The Kappa coefficients decrease for increasing threshold
values T. Very high Kappa coefficients, however, are associated
with severely over-segmented results as can be seen after
comparison with Fig. 8. Very low values, on the other hand,
correspond to under-segmentation. A correct interpretation of K̂
or the extraction of optimal T and wk values is only reasonable
when there is no over-or under-segmentation. This can be
achieved when the segment size of segmentation output and
reference has similar magnitudes as indicated by the lines in
Fig. 9. From these lines, it appears that only the thematic
labeling for LC resulted in K̂ values above 0.7, whereas lower
Kappa coefficients were obtained for the LR labeling.

Fig. 10a–b presents the boundary accuracy measure D(B)
from Eq. (13) that was corrected for over-segmentation. A
logarithmic scale is also used here, since D(B) values are also
related to exponential area size. All subplots display a
segmentation optimum for each combination of weights, where
the correspondence between segmentation output and reference
reach a maximum in comparison with the T values. Analysis of
the values of D(B) at these optima confirms the result of Fig. 9a,
showing the best correspondence between segmentation opti-
mum and LC. The MTHIS output resembled more accurately the
LC map (D(B)=1.10 and K̂=0.88 for w0=0.6, w5=0.4, and
T=0.01) than the LR map (D(B)=3.47 and K̂=0.52 for w0=0.9,
w5=0.1, and T=0.03). This also illustrates the importance of the
combination of the average (w0=0.6) and annual (w5=0.4)
temporal information for a correct landcover–landuse mapping,
while the influence of the annual term is less (w5=0.1) for
optimal LR delineation. Fig. 11 shows the borders of the MTHIS
segmentation optimum in comparison with the LC map after
assigning the zonal majority value of the LC map, whereas the
color scale represents the original LC map. It can be seen that the
output closely resembles the original LC map, where small
regions differences occur for the small regions of in the LC map
due to the zonal majority procedure.

6. Discussion

6.1. MTHIS methodology

Although the MTHIS was developed for image time series, it
provides a hierarchical image segmentation methodology that
can be applied to any image series, e.g., image hyperspectral
series. The proposed MTHIS methodology differs however in
two points from the classic hierarchical segmentations. Firstly,
the segmentation is not based on original data values, but on the
decomposition of these values in FFT components. Secondly,
the incorporation of the Fk-distance criterion allows effectively
to cluster based on the similarity of the FFTcomponents, since it
combines both parameters that represent the FFT component, Ak

and ϕk, respectively, into one dissimilarity measure. On the
contrary, classical hierarchical segmentations such as eCogni-
tion (Baatz & Schäpe, 2000) or RHSEG (Tilton & Lawrence,
2000) consider each input parameter separately. These classic
methodologies consequently do not allow to measure the simi-
larity of the FFT components of the same frequency, since the
difference between FFT components cannot be calculated by
subtracting amplitude and phase separately (Smith, 1999).

The main advantage of the methodology is the use of FFT
components, which enables the distinction of signals with a
specific period. This is particularly amendable for detecting
periodic patterns in time series of satellite data, such as daily or
monthly NDVI time series of land surfaces that contain strong
systematic periodic patterns related to vegetation features and
nonsystematic high frequent image noise. Hence, information
related to temporal vegetation characteristics can be separated
from noise originating from atmospheric and viewing angle
effects, cloud contamination, and other types of high frequency
factors. A similar effect could be possibly achieved by applying
classical hierarchical image segmentation techniques on
Principal Component Analysis (PCA) components related to
vegetation growth. PCA decomposition, however, does not
allow the separation of different frequencies, since it is
completely data dependent. It is therefore impossible to assert
that a given component will reflect identical temporal properties
between geographical areas, whereas FFT components always
express the same specific periodicity. Additionally, this
advantage of the FFT allows the accentuation of information
with a specific periodicity, e.g. periods related to El Niño/
Southern Oscillation (ENSO) processes like detected by
Barbosa et al. (2006) and Young (2005). The periods related
to these processes can be specifically selected by assigning high
weights and may provide authors such as Nagai et al. (2007) a
means to better assess the influence of these processes on
ecosystems without noise components. Alternatively, one could
argue that this selection of some periodic patterns implies an
information loss and that it obscures other temporal character-
istics. This represents a valid concern and, as a consequence, the
segmentation results should be interpreted as segments with
similar temporal properties related to the selected periodic
components.

One of the limitations of the FFT, on the other hand, is the
assumption that time series show a certain periodicity (i.e., that
variations in the time series are repeated at an uniform time-
step) and have infinite duration. Consequently, the MTHIS
methodology excludes the identification of stochastic dynamics
or the distinction between subsequences of time series, which
can be very important for the interpretation of ecosystem
processes. For example, consider a five year time series of a
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grassland pixel that is burnt in the second year, but completely
recovered after the third year. The MTHIS methodology will not
detect this change as it assumes that variations in condition
occur at the same rate in all years. The MTHIS will also not
detect landcover–landuse changes between years, since it is
based on an assessment of the complete time series and does not
allow distinction between subsequent years. However, these
changes can be derived in other strategies, e.g. by applying
MTHIS to time series of individual years and considering the
differences in MTHIS output between subsequent years. The
development of an alternative methodology based on similar-
ities in wavelet transforms could also serve as a solution, since
the wavelet transform can be used to scale conventional
Fourier components. Accordingly, it decomposes a signal in
terms of both time and frequency simultaneously (Daubechies,
1990).

MTHIS application however does not only depend on the
selected FFT components. The result of MTHIS will moreover
be influenced by the random selection sequence of segments
and by threshold values T in the hierarchical segmentation
process. Together they determine an arbitrary element in the
segmentation sequence that will be reflected by the MTHIS
output. This arbitrary element can nevertheless be minimized by
correctly assigning threshold values T. If MTHIS is initialized
with T=x, 2x,…, ∞, where x is infinitely small, the arbitrary
sequence is removed, since the hierarchical stepwise segmen-
tation algorithm of Beaulieu and Goldberg (1989) is obtained.
This algorithm produces a segmentation with minimal error by
allowing only the smallest merge at each segmentation run and
thus guaranteeing that each segment is merged with its nearest
neighbor. The major limiting factor of this algorithm is
unfortunately the computing speed due to one merge per run.
Therefore a balance between objectivity and speed has to be
assessed by allowing multiple merges per segmentation run and
a minimal arbitrariness.

T values have to be selected accordingly, so they minimize
the computing time and level of arbitrariness. Additional
changes to the segmentation sequence of MTHIS, such as the
multiple merges per pass approach as proposed by Woodcock
and Harward (1992) could reduce the stochastic element even
more. Future changes of the methodology should consequently
focus on the implementation of these improvements.

Although the Fk-distance provides effectively a measure to
assess the similarity between FFT components, which is
impossible with the classical hierarchical segmentation meth-
odologies, the use of the Fk-distance has also certain limitations.
These limitations correspond to the limitations of the minimum
distance to mean classifier (Lillesand & Kiefer, 2000). Both are
insensitive to different degrees of variance. The use of
alternative dissimilarity measures, such as the standard
deviation of FFT components, causes nevertheless other
difficulties, since this approach would consider both parameters
of the FFT component separately. On the other hand,
introduction of other similarity measures that evaluate both
the variance and covariance of these parameters, such as
Gaussian maximum likelihood measures, would increase
computing time tremendously, since for every possible merge
covariance measures need to be calculated between all pixels in
neighboring segments. Given the size of the images we are
dealing with in this study, this approach required far too much
computing time. We therefore believe that the methodology
presented here will prove useful until more sophisticated
approaches for assessing the similarity between FFT compo-
nents become available.

Moreover, the MTHIS methodology provides an generic
methodology that can be adapted towards user requirements, for
example, in remote sensing applications where the piecewise
homogeneous scene model is violated. In this model it is
assumed that segments comprising the landscape have both low
internal variance and a common level of internal variance
(Woodcock & Harward, 1992). Unfortunately, this assumption
is often inadequate for images over different landcover–landuse
types. This means that for an average threshold value T,
neighboring pixels of landcover–landuse types with low
internal variance will be grouped in few segments, whereas
neighboring pixels of landcover–landuse types with high
internal variance will not merge. Although the MTHIS
methodology is partly adapted to this problem by allowing
only one merge per segment per segmentation run, it is very
unlikely that all the segments defined by the MTHIS output
correspond to patches of the same level of the landscape
hierarchy. To solve this, additional size constraints or measures
of internal local variance can be incorporated by the user in the
MTHIS methodology. Woodcock and Harward (1992) for
example proposed the use of an additional texture channel that
could also be used as additional measure in S.

6.2. MTHIS protocol

Application of the MTHIS protocol on five year VGT NDVI
time series of South Africa illustrated the potential of the
methodology. The average and annual terms were selected,
since they represented the major spatio-temporal variability in
the study area. The importance of these two terms for vegetation
description corroborates the work of Azzali and Menenti (2000)
and Moody and Johnson (2001). These authors discussed the
average and annual term to demonstrate the usefulness of FFT
components to describe vegetation phenological characteristics.
They exploited the information of these terms and the sixth
month FFT term to classify the vegetation of South Africa using
a per-pixel iso-cluster procedure that is insensitive to nonsys-
tematic data noise in the higher-order components.

Moreover, the selection and identification of the relevant
spatio-temporal FFT components revealed the distinction in
spatio-temporal variability between both the average and annual
term. This distinction is critical to an understanding of
vegetation dynamics, because both terms relate to different
biophysical processes. The average term is mainly related to
climate effects and reflects the changing amounts of vegetation
cover related to rainfall per-pixel (Azzali & Menenti, 2000).
The overall variability of the vegetation cover is large, ranging
from almost no rainfall in the western desert, to high rainfall
areas like the forest plantations in the east (Fig. 6a). Moody and
Johnson (2001), on the other hand, showed that the annual term
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is linked to localized effects such as structural landcover–
landuse (e.g. difference between evergreen, deciduous and
annual habit) with a higher relative spatial variability.

The visualization by means of the BSI allowed an
interpretation of the segmentation boundaries at different scale
levels. Additionally, the BSI provided an indication of the
quality of the MTHIS methodology when BSI boundaries were
compared with the input FFT component images. Hence, BSI
boundaries are essential from a user's perspective as they allow
a first analysis of the segmentation hierarchy. In this paper, the
hierarchical structure of the segments was not specifically
studied in detail, but it was established inherently, and can be
incorporated in future research to analyze how the segments
change from one scale level to another.

Comparison of the MTHIS output with the LR and LC
reference maps confirmed moreover the expected agreement at
a specific scale level between segmentation result and factors
that describe the vegetation characteristics at this scale level.
The Kappa and boundary accuracy measures also showed that
this agreement was much higher for the LC map than for the LR
map. This partly can be attributed to the definition and the
original purpose of the reference maps. The LR map describes
the biological resources from a perspective of potential natural
vegetation as a functional combination of soil, physical
environment, and climate, rather than actual landcover–landuse
influenced by man-made transformations (Low & Rebelo,
1996). The LR maps are by definition very heterogeneous and
based on vegetation structure, ecological processes and
occurrence of important plant species and do not necessarily
provide direct information about the dynamics of vegetation
green cover and its foliar phenology. Consequently, it fails to
describe the actual vegetation and is more related to potential
vegetation resulting from climatological and biophysical
characteristics which are often obscured by man-made altera-
tions. The Kappa and boundary accuracy measures for the
landcover–landuse map, on the other hand, confirmed the
results of Moody and Johnson (2001), who showed that FFT
components provide a concise and repeatable input for
summarizing baseline inter-annual variability of landcover
dynamics over broad regions and can be used as criteria for
differentiating landcover types on the basis of temporal
properties. The MTHIS methodology, however, groups the
temporal properties at more scale levels, for which applicable
reference maps were not readily available. It is debateable what
these other scale levels represent, besides uniformity in
temporal behavior, for vegetation mapping purposes. Never-
theless, certain scale levels already provide useful information,
such as the difference in summer and winter rainfall regions.
The description of these and all other scale levels is an important
theme that should provide focus for future research on this
topic. Future work should therefore concentrate on the
construction of truly objective and external reference data
with detailed hierarchical and spatio-temporal characteristics
that effectively allow the validation of the MTHIS output at all
scale levels. The use for example of artificial data sets, whose
hierarchical and temporal properties can be completely
controlled, could provide a great help in this context.
7. Conclusion

A MTHIS methodology was proposed to integrate remote
sensing time series in a hierarchical image segmentation
approach. MTHIS clusters adjoining pixels with similar temporal
properties into hierarchical segments at various scales. Therefore,
the similarity of temporal behavior was defined as similarity of
FFTcomponents and an Fk-distance criterion was introduced that
employs the Euclidian distance between FFT components of the
same frequency as similarity measure. This choice was based on
the duality between the frequency domain of the FFT
components and time domain of the NDVI time series. They
contain exactly the same information, but in a different form. The
use of FFT components and Fk-distance, however, allowed the
elimination of components that represented little more than noise
contained in the original time series, resulting in an increased
computational efficiency of the segmentation methodology.

Application of the methodology in a specific MTHIS
protocol for VGT NDVI time series demonstrated the concept
of MTHIS. The actual MTHIS was performed on the average
and annual FFT term, since these components contained the
majority of the spatio-temporal variability in the NDVI time
series. The selection of these components was assessed by
means of the energy density spectrum and Fk-distance as a
function of lag distance. The results of the MTHIS implemen-
tation were visualized by means of BSI overlays. These
overlays provided an indication of the quality of the MTHIS.
Additionally, they confirmed the usefulness of MTHIS to
partition the study area at different hierarchical scale levels.

Finally, the correspondence between MTHIS results and
reference layers of vegetation characteristics at different scales
was assessed to determine the specific segmentation optimum
where both coincide at the pre-defined management scale of the
reference layer. The comparison of these optima revealed a close
relationship between segmentation output and landcover–landuse
reference map. This relationship was less clear for the vegetation
type reference maps due to the reference map purpose and defi-
nition.On the other hand, the accuracymeasures for the landcover–
landuse map strengthened the findings of earlier studies with FFT
components that also successfully mapped landcover types based
on these components. The MTHIS methodology, however, adds
much more information as its provides results at several scale
levels. The description and evaluation of these other scale levels
based on various data with a wide range of reference layers is
however crucial for future research.
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