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Abstract. Avast area (more than 100 000 ha) of forest, shrubs and agricultural land burned on the Peloponnese peninsula
in Greece during the 2007 summer. Three pre- and post-fire differenced Landsat Thematic Mapper (TM)-derived spectral
indices were correlated with field data of burn severity for these devastating fires. These spectral indices were the
NormalisedDifferenceVegetation Index (NDVI), theNormalisedDifferenceMoisture Index (NDMI) and theNormalised
Burn Ratio (NBR). The field data consist of 160 Geo Composite Burn Index (GeoCBI) plots. In addition, indices were
evaluated in terms of optimality. The optimality statistic is a measure for the index’s sensitivity to fire-induced vegetation
depletion. Results show that the GeoCBI–dNBR (differenced NBR) approach yields a moderately high R2¼ 0.65 whereas
the correlation between field data and the differenced NDMI (dNDMI) and the differenced NDVI (dNDVI) was clearly
lower (respectively R2¼ 0.50 and R2¼ 0.46). The dNBR also outperformed the dNDMI and dNDVI in terms of
optimality. The resulting median dNBR optimality equalled 0.51 whereas the median dNDMI and dNDVI optimality
values were respectively 0.50 and 0.40 (differences significant for Po 0.001). However, inaccuracies observed in the
spectral indices approach indicate that there is room for improvement. This could imply improved preprocessing, revised
index design or alternative methods.

Additional keywords: fire severity, Geo Composite Burn Index, Normalised Burn Ratio, Normalised Difference
Vegetation Index, optimality, spectral index.

Introduction

Wildfires play a major role in Mediterranean-type ecosystems
(MTEs) (Vázquez and Moreno 2001; Dı́az-Delgado et al. 2004;
Pausas 2004; Pausas et al. 2008) as they partially or completely
remove the vegetation layer and affect post-fire vegetation
composition, water and sediment regimes, and nutrient cycling
(Kutiel and Inbar 1993). As such, they act as a natural compo-
nent in vegetation succession cycles (Trabaud 1981; Capitanio
and Carcaillet 2008; Roder et al. 2008) but also potentially
increase degradation processes, such as soil erosion (Thomas
et al. 1999; Chafer 2008; Fox et al. 2008). Assessment of the fire
impact is thus a major challenge to understand the potential
degradation after fire (Kutiel and Inbar 1993; Fox et al. 2008)
and to comprehend ecosystems’ post-fire resilience (Epting and
Verbyla 2005; Lentile et al. 2007).

The terms fire severity and burn severity are often inter-
changeably used (Keeley 2009), describing the amount of
damage (Hammill and Bradstock 2006; González-Alonso et al.
2007; Chafer 2008) the physical, chemical and biological

changes (Landmann 2003; Chafer et al. 2004; Cocke et al.
2005; Stow et al. 2007; Lee et al. 2008) or the degree of
alteration (Brewer et al. 2005; Eidenshink et al. 2007) that fire
causes to an ecosystem. Some authors, however, suggest a clear
distinction between both terms by considering the fire distur-
bance continuum (Jain et al. 2004), which addresses three
different temporal fire effects phases: before, during and after
the fire. In this context, fire severity quantifies the short-term
fire effects in the immediate post-fire environment (Lentile et al.
2006) and is usually measured in an initial assessment scheme
(Key andBenson 2005). As such, it mainly quantifies vegetation
consumption and soil alteration. Burn severity, however, quan-
tifies both the short- and long-term impact as it includes
response processes (e.g. resprouting, delayed mortality), which
is evaluated in an extended assessment (EA) that incorporates
both first- and second-order effects (Lentile et al. 2006; Key
2006). In the present study, burn severity, defined as the absolute
magnitude of environmental change caused by a fire (Key and
Benson 2005), is estimated 1 year post-fire.
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Several remote sensing studies have discussed the potential
of satellite imagery as an alternative for extensive field sampling
to quantify burn severity over large areas. These studies eval-
uated the use of spectral unmixing, simulation techniques and
spectral indices to assess burn severity (for a comprehensive
review of remote sensing techniques for burn severity assess-
ment, see Kasischke et al. 2007; French et al. 2008). Spectral
mixture analysis (Rogan and Yool 2001; Lewis et al. 2007;
Robichaud et al. 2007) and simulation models (Chuvieco et al.
2006; De Santis and Chuvieco 2007; De Santis et al. 2009)
have proved to provide valuable information with regards to
burn severity. Spectral indices, however, are a more popular
approach,mainly because of their computational and conceptual
simplicity. These spectral indices are typically based on Nor-
malised Difference Spectral Indices (NDSIs), such as the
Normalised Difference Vegetation Index (NDVI) (Isaev et al.
2002; Chafer et al. 2004; Dı́az-Delgado et al. 2004; Ruiz-
Gallardo et al. 2004; Hammill and Bradstock 2006; Hudak
et al. 2007) or the widely used Normalised Burn Ratio (NBR)
(e.g. López Garcı́a and Caselles 1991; Epting et al. 2005; Key
and Benson 2005;Miller and Thode 2007). TheNDVI combines
the reflectance in the R (red) and NIR (near-infrared) spectral
region and is a measure of the amount of green vegetation,
whereas the NBR relates to vegetation moisture by combining
the NIR with MIR (mid-infrared) reflectance. As fire effects
on vegetation produce a reflectance increase in the R and MIR
spectral regions and a NIR reflectance drop (Pereira et al. 1999),
bitemporal image differencing is frequently applied on pre- and
post-fire NDVI or NBR images. This results respectively in the
differenced Normalised Difference Vegetation Index (dNDVI)
(Chafer et al. 2004; Hammill and Bradstock 2006) and the
differenced Normalised Burn Ratio (dNBR) (Key and Benson
2005). The advantage of these pre- and post-fire differenced
indices is that they permit a clear discrimination between
unburned sparsely vegetated areas and burned areas, which is
difficult in monotemporal imagery (Key and Benson 2005).

Awide range of field data has been considered to validate the
remotely sensed indices for estimating burn severity: percentage
live trees (López Garcı́a and Caselles 1991; Alleaume et al.
2005; Smith et al. 2007) or percentage tree mortality (Kushla
and Ripple 1998; Isaev et al. 2002), basal area mortality
(Chappell and Agee 1996), combustion completeness
(Alleaume et al. 2005), changes in Leaf Area Index (LAI) (Boer
et al. 2008) and fractional cover of several components (Kokaly
et al. 2007; Lewis et al. 2007; Robichaud et al. 2007). However,
by far the most widely used field measurement is the Composite
Burn Index (CBI) (Key and Benson 2005). The CBI is a
semiquantitative field sampling approach based on an expert
judgement procedure, developed as an operational methodology
for validating remotely sensed assessments of burn severity on a
national scale in the USA as part of the FIREMON (Fire Effects
Monitoring and Inventory Protocol) project. The CBI is funda-
mentally different to the abovementioned field approaches
because in the CBI, the sample plot is considered in a holistic
way. Several attributes (e.g. char height, % LAI change) of the
plot are visually examined and numerically rated per ecosystem
stratum (substrates, low shrubs, tall shrubs, intermediate trees
and high trees). The total plot score, which is an average of
the average stratum ratings, expresses the plot’s burn severity.

Recently, GeoCBI, a modified version of the CBI, has been
developed (De Santis and Chuvieco 2009). The main modifica-
tion of the GeoCBI consists of the consideration of the fraction
of coverage (FCOV, the percentage of cover with respect to the
total extension of the plot) of the different vegetation strata,
which results in a more consistent relation between the GeoCBI
and the remotely sensed burn severity measure (De Santis and
Chuvieco 2009). Knowledge about theGeoCBI–dNBR relation-
ship recently increased for the North American boreal region
(Epting et al. 2005; Allen and Sorbel 2008; Hall et al. 2008; Hoy
et al. 2008;Murphy et al. 2008). However, studies that assess the
empirical relationship between vegetation indices and field data
in the fire-prone Mediterranean biome (De Santis and Chuvieco
2007) are underrepresented in the literature.

The dNBR approach has been questioned (Roy et al. 2006)
as it was initially developed for detecting burned areas (López
Garcı́a and Caselles 1991) rather than evaluating within-burn
differences in combustion completeness. To evaluate dNBR
index performance, a pixel-based optimality measure originat-
ing from the spectral index theory (Verstraete and Pinty 1996),
which varies between zero (not at all optimal) and one (fully
optimal), has been developed (Roy et al. 2006). An optimal burn
severity spectral index needs to be very sensitive to fire-induced
vegetation changes and insensitive to perturbing factors such as
atmospheric and illumination effects. Very lowmean optimality
values were reported using in situ reflectance, Landsat
Enhanced Thematic Mapper plus (ETMþ)- and Moderate
Resolution Imaging Spectroradiometer (MODIS)-sensed data,
suggesting that the dNBR approach is incapable of retrieving
reliable information with regards to burn severity (Roy et al.
2006). However, markedly higher mean optimality measures
were found for six burns in Alaska, USA (Murphy et al. 2008).
Also, the dNBR optimality statistics were found to outperform
the dNDVI optimality measures (Escuin et al. 2008), suggesting
that the dNBR remains the most optimal NDSI for estimating
burn severity.

Several authors highlight the need for an independent valida-
tion of burn severity assessments based on spectral indices for
specific regions and vegetation types (Cocke et al. 2005; Key
and Benson 2005; Lentile et al. 2006; Chuvieco and Kasischke
2007; Fox et al. 2008). As the technique is conceptually and
computationally easy, burn severity maps based on spectral
indices could form an important instrument for post-fire man-
agement practices in the fire-prone Mediterranean ecoregion. It
is therefore our objective to evaluate different spectral indices
derived from Landsat TM imagery for assessing burn severity
of the large 2007 Peloponnese wildfires in Greece. This general
objective is fulfilled (i) by evaluating the relationship between
field data and several pre- and post-fire differenced vegetation
indices, and (ii) by comparing optimality statistics of those
indices.

Study area

The area of interest is located in the Peloponnese, Greece
(368300–388300N, 218–238E) (see Fig. 1). Elevations range
between 0 and 2404m above sea level. Hot, dry summers
alternate with mild, wet winters, resulting in a typical Medi-
terranean climate. For the Kalamata meteorological station
(37840N, 22810E), the mean annual precipitation equals 780mm
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and the average annual temperature is 17.88C (Hellenic National
Meteorological Service, www.hnms.gr, accessed 29 June 2010).

Large wildfires struck the area (Gitas et al. 2008) in the 2007
summer. The first large burn started on 26 July 2007 and lasted
until 1 September 2007. The fires devastated a large amount
(more than 100 000 ha) of coniferous forest, broadleaved forest,
shrublands (phrygana and maquis communities) and olive
groves. Black pine (Pinus nigra) is the dominant conifer species.
Phrygana is dwarf scrub vegetation (o1m), which prevails on
dry landforms (Polunin 1980). Maquis communities consist of
sclerophyllous evergreen shrubs 2–3m high. The shrub layer is
characterised by, for example, Kermes oak (Quercus coccifera),
Hungarian oak (Q. frainetto), mastic tree (Pistacia lentiscus),
sageleaf rockrose (Cistus salvifolius), hairy rockrose (C. inca-
nus), tree heath (Erica arborea) and thorny burnet (Sarcopo-
terum spinosum). The olive groves consist of Olea europaea
trees, whereas oaks are the dominant broadleaved species.

Methods

Data and preprocessing

For assessing burn severity of the summer 2007 Peloponnese
fires, two anniversary-date Landsat TM images (path 184,
row 34) were used (23 July 2006 and 13 August 2008) (Step 1 in
Fig. 2). The images were acquired in the summer, minimising
effects of vegetation phenology and differing solar zenith

angles. The images were subjected to geometric, radiometric,
atmospheric and topographic correction (Step 2 in Fig. 2).

The 2008 image was geometrically corrected using 34
ground control points (GCPs), recorded in the field with a
Garmin eTrex Vista (Garmin International, Olathe, KS) global
positioning system (GPS) (15-m error in x and y under ideal
conditions (Garmin 2005), but up to 35.5m under closed canopy
(Chamberlain 2002)). The resulting Root Mean Squared Error
(RMSE) was lower than 0.5 pixels. The 2006 and 2008 images
were coregistered within 0.5-pixel accuracy. All images were
registered in Universal Transverse Mercator (zone 34S), with
ED 50 (European Datum 1950) as geodetic datum.

Raw digital numbers (DNs) were scaled to at-sensor radiance
values (Ls) (Chander et al. 2007) but with band-specific para-
meters proposed for Landsat TM data processed and distributed
by the ESA (European Space Agency) (Arino et al., undated).
The radiance to reflectance conversion was performed using the
COST method of Chavez (1996):

ra ¼
pðLs $ LdÞ

ðEo=d2Þðcos yzÞ2
ð1Þ

where ra is the atmospherically corrected reflectance at the
surface; Ls is the at-sensor radiance (Wm$2 sr$1); Ld is the path
radiance (Wm$2 sr$1); Eo is the solar spectral irradiance
(Wm$2); d is the earth–sun distance (astronomical units); and
yz is the solar zenith angle. The COST method is a dark-object
subtraction (DOS) approach that assumes 1% surface reflec-
tance for dark objects (e.g. deep water). After applying the
COST atmospheric correction, pseudo-invariant features (PIFs)
such as deep water and bare soil pixels were examined in the
images. No further relative normalisation between the images
was required.

It was necessary to correct for different illumination effects due
to topography. Thiswas done based on theC correctionmethod, an
empirical modification of the cosine correction approach (Teillet
et al. 1982), using a digital elevationmodel (DEM) and knowledge
of the solar zenith and azimuth angle at the moment of image
acquisition. Topographical slope and aspect data were derived
from 90-m SRTM (Shuttle Radar Topography Mission) elevation
data (Jarvis et al. 2006) resampled and coregistered with the
Landsat images. The illumination is modelled as:

cos gi ¼ cos yp cos yz þ sin yp sin yz cosðja $ joÞ ð2Þ

where gi is the incident angle (angle between the normal to the
ground and the sun rays); yp is the slope angle; yz is the solar
zenith angle; ja is the solar azimuth angle; and jo is the aspect
angle. Then, terrain-corrected reflectance rt is defined as:

rt ¼ ra
cos yz þ ck

cos gi þ ck

! "
ð3Þ

where ck is a band-specific parameter, ck¼ bk/mk, where bk
and mk are the respective intercept and slope of the regression
equation ra¼ bkþmk cos gi. As topographic normalisation
works better when applied separately for specific land cover
types (Bishop and Colby 2002), burned area-specific C-values
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Fig. 1. Location of the study area and distribution of the field plots (marked

by blue crosses) (Landsat TM (Thematic Mapper) image 13 August 2008,

UTM (Universal Transverse Mercator) 34S ED50).
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were calculated by masking the unburned areas using a two-
phase threshold method (Veraverbeke et al. 2010).

To assess burn severity in the field, 160 GeoCBI plots were
collected 1 year post-fire, in September 2008. The GeoCBI is a
modified version of the CBI (De Santis and Chuvieco 2009).
The GeoCBI and CBI are operational tools used in conjunction
with the Landsat dNBR approach to assess burn severity in the
field (Key and Benson 2005). The GeoCBI divides the ecosys-
tem into five different strata, one for the substrates and four for
vegetation layers. These strata are: (i) substrates; (ii) herbs, low
shrubs and trees less than 1m; (iii) tall shrubs and trees of 1 to
5m; (iv) intermediate trees of 5 to 20m; and (v) big trees higher
than 20m. The strata are grouped as understorey (i–iii) and
overstorey (iv–v). In the field form, 20 different factors can be
rated (e.g. soil and rock cover–colour change, % LAI change,
char height) (see Table 1) but only those factors present and
reliably rateable are considered. The rates are given on a
continuous scale between zero and three and the resulting factor
ratings are averaged per stratum. Based on these stratum
averages, the GeoCBI is calculated in proportion to their

corresponding fraction of cover, resulting in a weighted average
between zero and three that expresses burn severity.

The 160 sample points were selected based on a stratified
sampling approach, taking into account the constraints on
mainly accessibility and time, that encompasses thewhole range
of variation found within the burns. Contributing to this objec-
tive, 10 out of the 160 plots were measured in unburned land,
with a consequent GeoCBI value of zero. The field plots
consisted of 30 by 30-m squares, analogous to the Landsat pixel
size. The pixel centre coordinates were recorded based on one
measurement with a handheld Garmin eTrex Vista GPS device.
Tominimise the effect of potential misregistration, plots were at
least 90m apart and chosen in relatively homogeneous areas of
at least 60 by 60m, although preferably more (Key and Benson
2005). This homogeneity refers both to the fuel type and the
fire effects. Of the 160 field plots, 67 plots were measured
in shrubland, 58 in coniferous forest, 17 in broadleaved forest
and 18 in olive groves. Fig. 3 shows examples of low-,moderate-
and high-severity plot photographs for the coniferous forest fuel
type.

Step 1:
Original data

• Landsat Thematic Mapper (TM) images
Pre-fire image date: 23 July 2006
Post-fire image date: 13 August 2008
Fire dates: from 26 July 2007 to 1 September 2008

Step 2:
Preprocessing

•

•
•
•

Geometric correction (Root Mean Squared Error ! 0.5 pixels using 
34 Ground Control Points)
Radiometric correction (Chander et al. 2007; Arino et al., undated)
Atmospheric correction (Chavez 1996)
Topographic correction (Teillet et al. 1982)

Step 3:
Indexing

Step 4:
Differencing

•
•
•

Differenced NDVI: dNDVI " NDVIpre # NDVIpost

Differenced NDMI: dNDMI " NDMIpre # NDMIpost

Differenced NBR: dNBR " NBRpre # NBRpost

Step 5:
Performance

evaluation

•

•

Correlation with 160 Geo Composite Burn Index plots (coefficient of
determination and Root Mean Squared Error)

Normalised Difference Vegetation Index (NDVI): NDVI "• TM4 # TM3
TM4 $ TM3

Normalised Difference Moisture Index (NDMI): NDMI "• TM4 # TM5
TM4 $ TM5

Normalised Burn Ratio (NBR): NBR "• TM4 # TM7
TM4 $ TM7

Optimality statistics of all burned pixels

Fig. 2. Methodological workflow.
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Spectral indices and optimality

In this study, the potential of three NDSIs for assessing fire-
induced vegetation change was evaluated using TM bands most
sensitive to post-fire reflectance changes: TM3 (630–690 nm),
TM4 (760–900 nm), TM5 (1550–1750 nm) and TM7 (2080–
2350 nm). Reflectance in the visual (TM3) and MIR (TM5 and
TM7) regions increases after fire, whereas the NIR region
(TM4) is characterised by a reflectance drop (Pereira et al.
1999). To capture this information, the NDVI combines R
(TM3) band with NIR (TM4) band information, whereas the
Normalised Difference Moisture Index (NDMI) (Wilson and
Sader 2002) and the NBR combine the NIR (TM4) band with a
MIR (TM5 and TM7, respectively) band. The NBR has become
the standard spectral index for assessing fire and burn severity,
especially in North American regions, whereas the NDMI has
not been evaluated before for fire and burn severity applications.
Nevertheless, it has been suggested that TM5 is well suited for
remote sensing of canopy water content (Tucker 1980). Con-
sequently, it might also reflect post-fire reflectance changes and
was included in the present study. These are the formulae of the
spectral indices used (Steps 3 and 4 in Fig. 2):

NDVI ¼ TM4 $ TM3

TM4þ TM3
, dNDVI ¼ NDVIpre $ NDVIpost

ð4Þ

NDMI ¼ TM4 $ TM5

TM4þ TM5
, dNDMI ¼ NDMIpre $ NDMIpost

ð5Þ

NBR ¼ TM4 $ TM7

TM4 þ TM7
, dNBR ¼ NBRpre $ NBRpost ð6Þ

For evaluating the optimality of the bitemporal change
detection, the TM4–TM3, TM4–TM5 and TM4 –TM7 bis-
pectral spaces were considered (see Fig. 4). If a spectral index
is appropriate to the physical change of interest, in this case
fire-induced vegetation depletion, there exists a clear relation-
ship between the change and the direction of the displacement
in the bispectral feature space (Verstraete and Pinty 1996). In
an ideal scenario, a pixel’s bitemporal trajectory is perpendi-
cular to the first bisector of the Cartesian coordinate system.
This is illustrated in Fig. 4 for the displacement from unburned
(U) to optimally (O) sensed burned. However, in practice
perturbing factors such as atmosphere and illumination
decrease the index performance. For example, in Fig. 4, a
pixel displaces from unburned (U) to burned (B) after fire.
Here, the magnitude of change to which the index is insensi-
tive is equal to the Euclidian distance |OB|. Thus, the observed
displacement vector UB can be decomposed into the sum of

Table 1. Geo Composite Burn Index (GeoCBI) criteria used to estimate fire and burn severity in the field (after De Santis and Chuvieco 2009)

FCOV, fraction of cover; LAI, leaf area index

Stratum Burn severity scale

No effect Low Moderate High

0 0.5 1 1.5 2 2.5 3

Substrates FCOV

Litter (l) or light fuel (lf) consumed 0% – 50% (l) – 100% (l) 480% (lf) 98% (lf)

Duff 0% – Light char – 50% – Consumed

Medium or heavy fuel 0% – 20% – 40% – 460%

Soil and rock cover–colour 0% – 10% – 40% – 480%

Herbs, low shrubs and trees less than 1m FCOV

Percentage foliage altered 0% – 30% – 80% 95% 100%

Frequency percentage living 100% – 90% – 50% o20% 0%

New sprouts Abundant – Moderate–high – Moderate – Low–none

Tall shrubs and trees 1 to 5m FCOV

Percentage foliage altered 0% – 20% – 60–90% 495% Branch loss

Frequency percentage living 100% – 90% – 30% o15% o1%

LAI change percentage 0% – 15% – 70% 90% 100%

Intermediate trees 5 to 20m FCOV

Percentage green (unaltered) 100% – 80% – 40% o10% None

Percentage black or brown 0% – 20% – 60–90% 495% Branch loss

Frequency percentage living 100% – 90% – 30% o15% o1%

LAI change percentage 0% – 15% – 70% 90% 100%

Char height None – 1.5m – 2.8m – 45m

Big trees 420m FCOV

Percentage green (unaltered) 100% – 80% – 50% o10% None

Percentage black or brown 0% – 20% – 60–90% 495% Branch loss

Frequency percentage living 100% – 90% – 30% o15% o1%

LAI change percentage 0% – 15% – 70% 90% 100%

Char height None – 1.8m – 4m – 47m
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the vectors UO and OB; hence, the index optimality is defined
as (Roy et al. 2006):

Optimality ¼ 1 $ jOBj
jUBj ð7Þ

As |OB| can never be larger than |UB|, the optimalitymeasure
varies between zero and one. If the optimality measure equals
zero, then the index is completely insensitive to the change of
interest. An optimality score of one means that the index per-
forms ideally for monitoring the change of interest.

Owing to the non-linearity of the relationship between field
and spectral indices estimates of burn severity (Zhu et al. 2006;
Hall et al. 2008), second-degree polynomial regressions were

performed to correlate the spectral indices (independent vari-
ables) and GeoCBI field data of burn severity (dependent
variables). Regression model results were compared using two
goodness-of-fit measures: the coefficient of determination R2

and the RMSE. The coefficient of determination is an estimate
of the proportion of the total variation in the data that is
explained by the model. The RMSE is a measure of how much
a response variable varies from themodel predictions, expressed
in the same units as the dependent data. The RMSE describes
how far points diverge from the regression line. In addition,
optimality statistics of all burned pixels were compared for the
different indices. The median statistic was used for this purpose
because of its robustness to outlier values and because the
optimality distribution functions appeared to be non-normal.

GeoCBI ratings:

Understorey – 2.50
Overstorey – 3.00
Total plot – 2.65

Large portions of downed fuels consumed. Substantial soil exposure and 
soil colour change. Pre-fire shrubs essentially absent and only few 
resprouts. Total overstorey consumption.

GeoCBI ratings:

Understorey – 1.06
Overstorey – 1.70
Total plot – 1.21

Moderate char and small fuels. Most of the pre-fire herbs and shrubs exist.
Some tree crowns blackened or scorched, and a substantial amount of
green unaltered trees.

GeoCBI ratings:

Understorey – 0.56
Overstorey – 0.90
Total plot – 0.66

Light char and little consumption of downed fuels. Most of the understorey
plants remain unaltered, some shrubs show mortality. Canopy almost
unaltered. Tree charring remains below 2 m.

Fig. 3. Example photographs of a high-, moderate- and low-severity plot in coniferous forest.
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Results

Correlation with field data

The distribution plots and regression lines of theGeoCBI and pre-
and post-fire differenced spectral indices are displayed in Figs 5d,
6e and 6f. Comparison of theR2 statistics shows that theGeoCBI–
dNBR relationship proved to be the strongest. This relationship
yielded a moderately high R2¼ 0.65 for a polynomial fitting
model. This was followed by the GeoCBI–dNDMI correlation,
which had an R2¼ 0.50. The GeoCBI–dNDVI relationship was
the weakest (R2¼ 0.46). The decreasing trend in R2 statistic is at
the same time associated with an increasing RMSE (0.35, 0.42
and 0.44 for the relationships between the GeoCBI and respec-
tively dNBR, dNDMI and dNDVI data). The spectral index
values of the dNBR approach clearly have a wider range than
those of the dNDMI and dNDVI approaches. The within-burn
dNBR range is almost double thewithin-burn dNDVI range.Most
field plots have dNBR values ranging from 0 to 0.8 (see Fig. 5f)
and dNDMI and dNDVI between 0 and 0.5 (see Fig. 5d, e).
Fig. 5a–c depicts the respective dNDVI, dNDMI and dNBR
maps. The dNBR map clearly reveals more contrast in the burnt
areas than the other maps.

Index optimality

Fig. 6a–c depicts the dNDVI, dNDMI and dNBR optimality
maps of the burned areas. The dNBR index (median¼ 0.51)
outperformed the dNDMI and dNDVI indices (medians of
respectively 0.50 and 0.40), whereas the dNDMI provided better
results than the dNDVI. The performance differences are also
reflected when the respective histograms are inspected (see
Fig. 6d–f). A large number of pixels have a dNDVI optimality
lower than 0.1 and the number of pixels steadily decreased with

increasing dNDVI optimality. The dNDMI histogram is more
equally distributed. Althoughmany pixels have dNBRoptimality
scores above 0.2 – 0.4, we can observe a slightly increasing trend
in terms of number of pixels when dNBR optimality increases.
According to the non-parametric Wilcoxon test (Hollander and
Wolfe 1999), differences in median optimality and distribution
functions are statistically significant (Po 0.001).

Discussion

The dNBR approach gave the overall best correlation with
GeoCBI field data, followed by the dNDMI and the dNDVI
approach. Indices with a MIR spectral band yielded better
results than indices lacking a MIR band. This corroborates
with earlier research findings: AVHRR (Advanced Very High
Resolution Radiometer) spectral indices based on the NIR and
MIR channels had a higher discriminatory potential for burned
surface mapping than indices based on the NIR and R channels
(Pereira 1999); the importance of the MIR region for burned
shrub–savannah discrimination with MODIS data has been
demonstrated (Trigg and Flasse 2001), and significant post-fire
spectral changes occurred in the 1500–2500-nm region using
hyperspectral AVIRIS (Airborne Visible and Infrared Imaging
Spectroradiometer) data (van Wagtendonk et al. 2004). In pre-
vious studies assessing the correlation between several spectral
indices andCBI field data, the NBRwas ranked as the best index
in pre- and post-burn approaches (Epting et al. 2005). For fires in
several regions in the USA, dNBR yielded higher correlations
than dNDVI (Zhu et al. 2006). In the report of Zhu et al. the
within-burn range of dNDVI values was approximately half
the within-burn range of dNBR values, which is similar to our
results. They also concluded that dNDVI was more influenced
by hazy remote sensing conditions due to the elevated potential
of atmospheric scattering in the red spectral region. Overall
results show a moderately high correlation between GeoCBI
field data and dNBR for the present case study in a Mediterra-
nean environment. Polynomial fitting models resulted in R2¼
0.65. This outcome falls within the range of results of previous
studies (French et al. 2008).

In studies based on the spectral index theory, the dNBR had a
higher mean optimality (0.49) than the dNDVI (0.18) based
on Landsat TM/ETMþ images (Escuin et al. 2008). Our results
approximate to the values reported in similar studies of 0.49
(Escuin et al. 2008) and ranging from 0.26 to 0.8 for six burns in
Alaska, USA (Murphy et al. 2008). However, results contrast
with the very low mean dNBR optimality scores (0.1) based
on Landsat ETMþ imagery for African savannah burns (Roy
et al. 2006). These authors also report low dNBR optimality
values for MODIS-sensed fires in other ecosystems (Russia,
Australia and South America). These results suggest that the
dNBR index is to a high degree suboptimal for assessing burn
severity. These poor optimality results, however, can possibly
be explained by the fact that Roy et al. (2006) included unburned
pixels in their optimality analysis. Unaffected pixels are gen-
erally associated with low optimality scores as a pixel’s dis-
placement in the bispectral space is only due to the noise (Escuin
et al. 2008). This explains the low optimality values reported
(Roy et al. 2006).

The NDMI based approach, which had not been evaluated
before for estimating burn severity, performed better than the

0

1

1

U

O

B

T
M

4

TM3, TM5 or TM7

Fig. 4. Example pre- and post-fire trajectory of a pixel in the TM4–TM3,

TM4–TM5 or TM4–TM7 feature space. A pixel displaces from unburned

(U) to burned (B). O resembles the position of an optimally sensed burned

pixel. The index (Normalised Difference Vegetation Index, NDVI; Normal-

ised Difference Moisture Index, NDMI; or Normalised Burn Ratio, NBR) is

sensitive to the displacement |UO| and insensitive to the displacement |OB|.

564 Int. J. Wildland Fire S. Veraverbeke et al.
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(c) dNBR map (f ) GeoCBI– dNBR

RMSE " 0.35

RMSE " 0.42

RMSE " 0.44

550 000

4
20

0
00

0
4

15
0

00
0

4
10

0
00

0

0.800
0.400
0.000

N

0 20 km

600 000

550 000

4
20

0
00

0
4

15
0

00
0

4
10

0
00

0

0.800
0.400
0.000

N

0 20 km

600 000

550 000

4
20

0
00

0
4

15
0

00
0

4
10

0
00

0

0.800
0.400
0.000

N

0 20 km

600 000

#0.5 0.0
0

1

2

G
eo

C
B

I

3

0.5

y " #1.854x 2$ 3.868x $ 1.045
R2" 0.464

dNDVI

1.0

#0.5 0.0
0

1

2

G
eo

C
B

I

3

0.5

y " #3.588x 2$ 4.473x $ 0.955
R2" 0.508

dNDMI

1.0

#0.5 0.0
0

1

2

G
eo

C
B

I

3

0.5

y " #2.082x 2$ 3.560x $ 0.908
R2" 0.648

dNBR

1.0

Fig. 5. Differenced Normalised Difference Vegetation Index (dNDVI), differenced Normalised DifferenceMoisture

Index (dNDMI), and differencedNormalised BurnRatio (dNBR)maps (a, b and c) and scatter plots and regression lines

for the GeoCBI (Geo Composite Burn Index)–dNDVI (d), GeoCBI–dNDMI (e) and GeoCBI–dNBR (f) relationships.

Evaluating spectral indices for estimating burn severity Int. J. Wildland Fire 565



NDVI-based approach. However, the NBR outperformed the
NDMI. This can be explained by the typically lower prefire
reflectances in Landsat TM band 7 (2080–2350nm) than in
Landsat TM band 5 (1550–1750nm) due to a higher degree of
water absorption by vegetation at longer wavelengths. Therefore,
fire-induced reflectance increase is likely to be clearer in TM7
than in TM5. As a result, an index with TM7 instead of TM5 is
able to capture a larger range of variation in post-fire effects.

Apart from the fact that the dNBR outperformed the dNDMI
and dNDVI, use of the dNBR to indicate burn severity is still
problematic. When the GeoCBI–dNBR scatter plot and regres-
sion line (see Fig. 5f ) are examined, three points of defective-
ness attract attention: (i) the insensitivity of the regressionmodel
to unburned pixels; (ii) the saturation of the model for GeoCBI

values higher than,2.5; and (iii) themoderately high dispersion
of the point cloud around the fitting line. First, the regression
line crosses the x axis at dNBR¼$0.23, whereas the unburned
reference plots are situated closer to dNBR¼ 0. According to
the regression equation (see Fig. 5f ), an unburned plot with a
dNBR value of zero would be associated with a GeoCBI value
of 0.91, which is a clear overestimation of severity. Second, the
regression model reveals asymptotic behaviour for GeoCBI
values higher than 2.5. As a consequence, the empirical model
potentially underestimates high-severity plots and is not able to
differentiate between them. This phenomenonwas also reported
in previous studies (e.g. van Wagtendonk et al. 2004; Epting
et al. 2005). As a solution for the insensitivity to unburned
pixels and the saturation problem, a non-linear model based on
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a saturated growth model was proposed (Hall et al. 2008). This
model effectively handled the insensitivity and saturation pro-
blems, however at the expense of a lowerR2 and a higherRMSE.
Third, the GeoCBI–dNBR model has a RMSE of 0.35, which
is approximately one ninth of the total GeoCBI variation. The
observed GeoCBI values thus substantially diverge from the
model predictions.

Potential sources of inaccuracy arise from both the field and
satellite levels. For example, 67 GeoCBI plots were measured in
shrubland to fulfil the need for a stratified sampling approach that
requires that the number of plots of each fuel type is in proportion
to the total area burned of each prefire land-cover type. However,
as is known (e.g. vanWagtendonk et al. 2004; Epting et al. 2005),
the CBI approach underperforms in non-forested areas. Part of the
observed inaccuracy can also be explained by the fact that both
field and satellite data are imperfect proxies of burn severity.
The CBI is based on a semiquantitative judgement procedure and
therefore possibly lacks absoluteness, while several noise factors
hamper satellite image analysis.

The amount of noise in the dNBR approach appeared to be
fairly high, as the median dNBR optimality of 0.51 is consider-
ably lower than the optimality of 1. An important part of the
spectral change in the TM4–TM7 bispectral space occurs
parallel to the NBR isolines (cf. distance |OB| in Fig. 4).
Deficient preprocessing (no or unsatisfactory atmospheric cor-
rection, topographic correction, image-to-image normalisati-
ony) can introduce noise in a remote sensing analysis. The
application of these procedures in burn severity applications is
sometimes blurred (French et al. 2008), although its importance
has already been demonstrated, for example by revealing the
effect of illumination on index values (Verbyla et al. 2008).

These findings can direct the burn severity research in
different directions. First, a thorough review of the influence
of preprocessing steps (especially atmospheric and topographic
correction) on dNBR performance is suggested. Second, it is
desired to improve the index design towards an index whose
isolines are oriented to realise a higher degree of sensitivity to
burn severity while providing insensitivity to other sources of
spectral variation. These first two research directions retain the
conceptual ease of the spectral indices approach. A third alter-
native could focus on the further development of more advanced
remote sensing techniques for operational use. In this context,
radiative transfer models (Chuvieco et al. 2006; De Santis and
Chuvieco 2007; De Santis et al. 2009) and spectral mixture
analysis (Lewis et al. 2007) have already proved to have great
potential.

Conclusions

Results of the field data and optimality-based analyses confirm
one another, demonstrating that the dNBRapproachwas the best
index of the three spectral indices tested for estimating burn
severity in this case study in a Mediterranean environment.
Results, however, also indicate that the dNBR approach suffers
from some striking inaccuracies. The empirical fit between field
and remotely sensed data is a subject for improvement, while the
mean dNBR optimality score was markedly lower than the ideal
scenario with optimality values of one. Further research in burn
severity mapping should therefore focus on (i) noise removal

(e.g. by improved preprocessing); (ii) improved index design;
and (iii) alternative methods such as radiative transfer models
and spectral unmixing.
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