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The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies was studied
for the case of the large 2007 Peloponnese wildfires in Greece. Fire severity is defined as the degree of
environmental change as measured immediately post-fire, whereas burn severity combines the direct fire
impact and ecosystems responses. Geo Composite Burn Index (GeoCBI), two pre-/post-fire differenced
Thematic Mapper (TM) dNBR assessments and a Moderate Resolution Imaging Spectroradiometer (MODIS)
dNBR time series were used to analyze the temporal dimension. MODIS dNBR time series were calculated
based on the difference between the NBR of the burned and control pixels, which were retrieved using time
series similarity of a pre-fire year. The analysis incorporated the optimality statistic, which evaluates index
performance based on displacements in the mid-infrared–near infrared bi-spectral space. Results showed a
higher correlation between field and TM data early post-fire (R2=0.72) than one-year post-fire (R2=0.56).
Additionally, mean dNBR (0.56 vs. 0.29), the dNBR standard deviation (0.29 vs. 0.19) and mean optimality
(0.65 vs. 0.47) were clearly higher for the initial assessment than for the extended assessment. This is due to
regenerative processes that obscured first-order fire effects impacting the suitability of the dNBR to assess
burn severity in this case study. This demonstrates the importance of the lag timing, i.e. time since fire, of an
assessment, especially in a quickly recovering Mediterranean ecosystem. The MODIS time series was used to
study intra-annual changes in index performance. The seasonal timing of an assessment highly impacts what
is actually measured. This seasonality affected both the greenness of herbaceous resprouters and the
productivity of the control pixels, which is land cover specific. Appropriate seasonal timing of an assessment
is therefore of paramount importance to anticipate false trends (e.g. caused by senescence). Although these
findings are case study specific, it can be expected that similar temporal constraints affect assessments in
other ecoregions. Therefore, within the limitations of available Landsat imagery, caution is recommended for
the temporal dimension when assessing post-fire effects. This is crucial, especially for studies that aim to
evaluate trends in fire/burn severity across space and time. Also, clarification in associated terminology is
suggested.
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1. Introduction

Wildfires affect the ecological functioning of many ecosystems
(Dwyer et al., 1999; Pausas, 2004; Riano et al., 2007) as they partially
or completely remove the vegetation layer and affect post-fire
vegetation composition (Epting & Verbyla, 2005; Lentile et al.,
2005). They act as a natural component in vegetation succession
cycles (Capitaino & Carcaillet, 2008; Roder et al., 2008; Trabaud, 1981)
but also potentially increase degradation processes, such as soil
erosion (Chafer, 2008; Fox et al., 2008; Perez-Cabello et al., 2006;
Thomas et al., 1999). Assessment of post-fire effects is thus a major
challenge to understand the potential degradation after fire (Fox et al.,
2008; Kutiel & Inbar, 1993) and to comprehend the ecosystem's post-
fire resilience (Epting & Verbyla, 2005; Lentile et al., 2005).

The fire impact can be described as (i) the amount of damage
(Chafer, 2008; Gonzalez-Alonso et al., 2007; Hammill & Bradstock,
2006), (ii) the physical, chemical and biological changes (Chafer et al.,
2004; Cocke et al., 2005; Landmann, 2003; Lee et al., 2008; Stow et al.,
2007) or (iii) the degree of alteration (Brewer et al., 2005; Eidenshink
et al., 2007) that fire causes to an ecosystem and is quantified as the
severity of fire. In this context the terms fire severity and burn severity
are often interchangeably used (Keeley, 2009). Lentile et al. (2006),
however, suggest a clear distinction between both terms by
considering the fire disturbance continuum (Jain et al., 2004), which
addresses three different temporal fire effects phases: before, during
and after the fire. In this framework fire severity quantifies the short-
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term fire effects in the immediate post-fire environment while burn
severity quantifies both the short- and long-term impact as it includes
response processes. While this substantive difference in terminology
between fire and burn severity is generally accepted in the remote
sensing community, fire ecologists tend to smooth away this distinc-
tion as they opt to exclude ecosystem responses from the term burn
severity (Keeley, 2009), thereby reducing its meaning to the same
dimension as the term fire severity, whichmakes both termsmutually
substitutional. However, the inclusion of ecosystem responses (such
as regrowth, regeneration and resilience) in burn severity is justified
by the significant negative correlation between direct fire impact and
regeneration ability (Diaz-Delgado et al., 2003). Moreover, except for
assessments immediately post-fire (within the first month), ecosys-
tem responses cannot be neglected in a satellite assessment as it is
practically infeasible to uncouple these effects from the direct fire
impact based on the image data. In addition, Key and Benson (2005)
and Key (2006) introduced three sets of complementary concepts.
The first set differentiates between first- and second-order effects,
where first-order effects are caused by the fire only, whereas second-
order effects also involve other causal agents (e.g. wind, rain, vege-
tative processes, etc.). Secondly, short-and long-term severity refer to
the condition of the burned area. Short-term severity is restricted to
the pre-recovery phase, while long-term severity includes both first-
and second-order effects. Thirdly, Key (2006) differentiates between
an initial assessment (IA) and an extended assessment (EA). This
difference results from differing lag timing, i.e. the time since fire, on
which an assessment is made. An IA is executed immediately after the
fire event, whereas by EAs a certain amount of time elapses between
the fire event and the assessment. Summarized, fire severity is defined
as the degree of environmental change caused by fire and is related to
first-order effects, short-term severity and IAs (Key & Benson, 2005).
As such it mainly quantifies vegetation consumption and soil alter-
ation. Burn severity, on the other hand, is equally defined as the
degree of environmental change caused by fire, but it also includes
second-order effects (e.g. resprouting, delayed mortality, etc.), long-
term severity and is usually measured in an EA (Key & Benson, 2005).
Finally, the term post-fire effects (Lentile et al., 2006) groups all above
mentioned severity-related notions. In Fig. 1 a schematic represen-
tation of post-fire effects terminology is given.
Fig. 1. Schematic representation of
Even though a considerable amount of remote sensing studies
have focused on the use of the Normalized Difference Vegetation
Index (NDVI) for assessing burn severity (Chafer et al., 2004; Diaz-
Delgado et al., 2003; Hammill & Bradstock, 2006; Hudak et al., 2007;
Isaev et al., 2002; Ruiz-Gallardo et al., 2004), the Normalized Burn
Ratio (NBR) has become accepted as the standard spectral index to
estimate fire/burn severity (e.g. Bisson et al., 2008; Epting et al., 2005;
Key & Benson, 2005; Lopez-Garcia & Caselles, 1991; Veraverbeke et al.,
in press—a,b). The NBR is used as an operational tool at national scale
in the United States (Eidenshink et al., 2007). The index relates to
vegetation vigor and moisture by combining near infrared (NIR) and
mid-infrared (MIR) reflectance and is defined as:

NBR =
NIR−MIR
NIR + MIR

: ð1Þ

Most of the studies that assessed burn severity were conducted
with Landsat imagery (French et al., 2008), thanks to Landsat's unique
properties of operating aMIR band and a desirable 30 m resolution for
local scale studies. Since fire effects on vegetation produce a
reflectance increase in the MIR spectral region and a NIR reflectance
drop (Key, 2006; Pereira et al., 1999), bi-temporal image differencing
is frequently applied on pre- and post-fire NBR images resulting in the
differenced Normalized Burn Ratio (dNBR) (Key & Benson, 2005).
Additionally, Miller and Thode (2007) proposed a relative version of
the dNBR (RdNBR). This index takes into account the pre-fire amount
of biomass, and therefore, rather than being a measure of absolute
change, reflects the change caused by fire relative to the pre-fire
condition. Apart from the correlation with field data (De Santis &
Chuvieco, 2009; Key & Benson, 2005; Veraverbeke et al., in press—a,b),
the performance of bi-spectral indices can be evaluated by assessing a
pixel's shift in the bi-spectral feature space. As such, a pixel-based
optimality measure, originating from the spectral index theory
(Verstraete & Pinty, 1996), has been developed by Roy et al. (2006).
They used the optimality concept to question the dNBR method as an
optimal fire/burn severity approach. The optimality value varies
between zero (not at all optimal) and one (fully optimal). An optimal
fire/burn severity spectral index needs to be as insensitive as possible
to perturbing factors, such as atmospheric and illumination effects
post-fire effects terminology.



Fig. 2. Location of the study area (MODIS daily surface reflectance MOD09GA FCC 01/
09/2007 RGB-721, UTM 34 S WGS84). Blue crosses indicate the field plot distribution
(section 2.2), while red crosses show the locations of the training samples used in the
land cover classification (Section 3.1).

Fig. 3. Ombrothermic diagram of the Kalamata (Peloponnese, Greece) meteorological
station (37ο4′1″ N 22ο1′1″ E) 1956–1997 (Hellenic National Meteorological Service,
www.hnms.gr).
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(Veraverbeke et al., 2010), and highly sensitive to fire-induced vege-
tation changes.

These post-fire vegetation changes typically are abrupt immedi-
ately after fire (Pereira et al., 1999), whereas a more gradual and
progressive vegetation regeneration process is initiated several weeks
after the fire (Viedma et al., 1997; van Leeuwen, 2008). Despite of the
current discussion on the temporal dimension in fire/burn severity
studies (Keeley, 2009) (see Fig. 1), relatively few studies have
addressed attention to the influence of assessment timing on the
estimation of post-fire effects. In this respect Key (2006) comprehen-
sively differentiates between two temporal constraints. The first
constraint is the lag timing. IAs focus on the first opportunity to get an
ecological evaluation of within-burn differences in combustion
completeness, whereas EAs occur as a rule in the first post-fire
growing season (Key, 2006). This constraint especially becomes
obvious in quickly recovering ecosystems where an inappropriate
lag timing can distort or hide the fire effects (Allen & Sorbel, 2008;
Lhermitte et al., submitted for publication). Allen and Sorbel (2008),
for example, found that IA and EA produced significantly different
information for tundra vegetation, while the timing of the assessment
had no effect for black spruce forest. This was attributed to the rapid
tundra recovery (Allen & Sorbel, 2008). The second constraint deals
with the seasonal timing, i.e. the biophysical conditions that vary
throughout the year, regardless of the fire. Analysis shortly after the
usually dry fire season for example can be detracted because of the
reduced variability in vegetation vigor during the dry season.
Conversely, when vegetation is green and productive, a broader
range of severity can be detectedwith better contrast (Key, 2006). The
importance of the phenological timing of an assessment was also
pointed by Verbyla et al. (2008). They found a clear discrepancy in
dNBR values between two different Landsat assessments, which was
partly attributed to the seasonal timing of the bi-temporal acquisition
scheme, while another part of the difference was due to the changing
solar elevation angles at the moment of the image acquisition. Apart
from these studies, relatively little attention has been devoted to the
temporal changes in theNBR and its consequence to estimatefire/burn
severity. This is probably due to the 16-day repeat cycle of Landsat and
the problem of cloudiness which restricts image availability to
infrequent images over small areas (Ju & Roy, 2008). Multi-temporal
Moderate Resolution Imaging Spectroradiometer (MODIS) data can
bridge the gap of image availability. MODIS is the only high temporal-
frequent coarse resolution (500 m) sensor which has the spectral
capability, i.e. acquisition of reflectance data in the MIR region besides
to the NIR region (Justice et al., 2002), to calculate the NBR. MODIS
surface reflectance data (Vermote et al., 2002) are therefore an ideal
source of information to explore the post-fire temporal, both in terms
of lag and seasonal timing, sensitivity of the dNBR to assess fire/burn
severity.

Hence, the general objective of this paper is assessing the temporal
dimension of the dNBR and its consequence for the estimation of fire/
burn severity of the large 2007 Peloponnese wildfires in Greece. This
objective is fulfilled by evaluating (i) the relationship between field
data of severity, Landsat dNBR and MODIS dNBR for an IA and EA
scheme, and (ii) the one-year post-fire temporal changes in dNBR and
dNBR optimality for different fuel types. 500 m MODIS dNBR data are
used in this study as a way to explore the temporal dimension, not as a
substitute for 30 m Landsat dNBR imagerywhich is superior for spatial
detail (French et al., 2008).

2. Data and study area

2.1. Study area

The study area is situated at the Peloponnese peninsula, in southern
Greece (36°30′–38°30′ N, 21°–23° E) (see Fig. 2). The topography is
ruggedwith elevations ranging between 0 and 2404 mabove sea level.
The climate is typically Mediterranean with hot, dry summers and
mild, wet winters (see Fig. 3). For the Kalamatameteorological station
(37°4′ N, 22°1′ E) the average annual temperature is 17.8 °C and the
mean annual precipitation equals 780 mm.

After a severe drought period several large wildfires of unknown
cause have struck the area in August 2007. The fires consumed more
than 150,000 ha of coniferous forest, broadleaved forest, shrub lands
(maquis and phrygana communities) and olive groves. Black pine
(Pinus nigra) is the dominant conifer species. Maquis communities
consist of sclerophyllous evergreen shrubs of 2–3 m high (Polunin,
1980). Phrygana is dwarf scrub vegetation (b1 m), which prevails on
dry landforms (Polunin, 1980). The shrub layer is characterized by e.g.
Quercus coccifera, Q. frainetto, Pistacia lentiscus, Cistus salvifolius, C.
incanus, Erica arborea, Sarcopoterum spinosum. The olive groves
consist of Olea europaea trees, whereas oaks are the dominant broad-
leaved species.

image of Fig.�2
image of Fig.�3
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2.2. Field data

To assess fire/burn severity in the field, 150 Geo Composite Burn
Index (GeoCBI) plots were collected one-year post-fire, in September
2008 (see Fig. 2). The GeoCBI is a modified version of the Composite
Burn Index (CBI) (De Santis & Chuvieco, 2009). The (Geo)CBI is an
operational tool used in conjunction with the Landsat dNBR approach
to assess fire/burn severity in the field (Key & Benson, 2005). The
GeoCBI divides the ecosystem into five different strata, one for the
substrates and four vegetation layers. These strata are: (i) substrates,
(ii) herbs, low shrubs and trees less than 1 m, (iii) tall shrubs and trees
of 1 to 5 m, (iv) intermediate trees of 5 to 20 m and (v) big trees
higher than 20 m. In the field form, 20 different factors can be rated
(e.g. soil and rock cover/color change,% LAI change, char height) (see
Table 1) but only those factors present and reliably rateable, are
considered. The rates are given on a continuous scale between zero
and three and the resulting factor ratings are averaged per stratum.
Based on these stratum averages, the GeoCBI is calculated in
proportion to their corresponding fraction of cover, resulting in a
weighted average between zero and three that expresses burn
severity. As the field data were collected one-year post-fire, it is an
EA.We believe that the direct fire effects visible in the plots would not
have lead to significantly different ratings when IA and EA schemes
would have been sampled independently. However, it is obvious to
omit the factor new sprouts form the IA scheme as this factor is not
relevant in a fire severity assessment (see Fig. 1) because regeneration
processes have not yet started at that moment.

The 150 sample points were selected based on a stratified
sampling approach, taking into account the constraints on mainly
accessibility and time, which encompasses the whole range of
variation found within the burns. The field plots consist of 30 by
30 m squares, analogous to the Landsat pixel size. The pixel centre
coordinates were recorded based on measurements with a handheld
Garmin eTrex Vista Global Positioning System (15 m error in x and y
(Garmin, 2005)) device. To minimize the effect of potential
misregistration, plots were at least 90 m apart and chosen in relatively
homogeneous areas (Key & Benson, 2005). This homogeneity refers
both to the fuel type (homogeneity of at least 500 m) and the fire
Table 1
GeoCBI criteria used to estimate fire/burn severity in the field (after De Santis & Chuvieco,

Stratum Burn severity scale

No effect Low

0 0.5 1

Substrates
Litter (l)/light fuel (lf) consumed 0% – 50% l
Duff 0% – Light char
Medium/heavy fuel 0% – 20%
Soil & rock cover/color 0% – 10%
Herbs, low shrubs and trees less than 1 m
% Foliage altered 0% – 30%
Frequency% living 100% – 90%
New sprouts Abundant – Moderate
Tall shrubs and trees 1 to 5 m
% Foliage altered 0% – 20%
Frequency% living 100% – 90%
LAI change% 0% – 15%
Intermediate trees 5 to 20 m
% Green (unaltered) 100% – 80%
% Black/brown 0% – 20%
Frequency% living 100% – 90%
LAI change% 0% – 15%
Char height none – 1.5 m
Big trees N20 m
% Green (unaltered) 100% – 80%
% Black/brown 0% – 20%
Frequency% living 100% – 90%
LAI change% 0% – 15%
Char height none – 1.8 m
effects (homogeneity of at least 60 m). Of the 150 field plots 63 plots
were measured in shrub land, 57 in coniferous forest, 16 in deciduous
forest and 14 in olive groves. More information on the field sampling
scheme can be found in Veraverbeke et al. (in press—a,b).

Additionally, 50 training samples in very homogeneous covers
(homogeneity of at least 2000 m) were GPS-recorded outside the
burned area (see Fig. 2). These samples comprised themost prevailing
fuel types in the burned area; 12 samples were taken in coniferous
forest, 17 in shrub land, 10 in deciduous forest and 11 in olive groves.
The dominant species of these land cover types are given in Section 2.1.

2.3. Landsat thematic mapper data

For the traditional Landsat post-fire effects assessment of the
summer 2007 Peloponnese fires three anniversary date Landsat
Thematic Mapper (TM) images (path/row 184/34) were used (23/
07/2006, 28/09/2007 and 13/08/2008). The images were acquired in
the summer, minimizing effects of vegetation phenology and differing
solar zenith angles. The images were subjected to geometric,
radiometric, atmospheric and topographic correction.

The 2008 image was geometrically corrected using 34 ground
control points (GCPs), recorded in the field with a Garmin eTrex Vista
GPS. The resulting Root Mean Squared Error (RMSE) was lower than
0.5 pixels. The 2006, 2007 and 2008 images were co-registered within
0.5 pixels accuracy. All images were registered in UTM (Universal
Transverse Mercator) (zone 34 S), with WGS 84 (World Geodetic
System 84) as geodetic datum.

Raw digital numbers (DNs) were scaled to at-sensor radiance
values using the procedure of Chander et al. (2007). The radiance to
reflectance conversion was performed using the COST method of
Chavez (1996). The COST method is a dark object subtraction (DOS)
approach that assumes 1% surface reflectance for dark objects (e.g.
deepwater). After applying the COST atmospheric correction, pseudo-
invariant features (PIFs) such as deep water and bare soil pixels, were
examined in the images. No further relative normalization between
the images was required.

Additionally, it was necessary to correct for different illumination
effects due to topography as the common assumption that shading
2009).

Moderate High

1.5 2 2.5 3

FCOV
– 100% l N80% lf 98% lf
– 50% – Consumed
– 40% – N60%
– 40% – N80%
FCOV
– 80% 95% 100%
– 50% b20% 0%

–high – Moderate – Low–none
FCOV
– 60–90% N95% branch loss
– 30% b15% b1%
– 70% 90% 100%
FCOV
– 40% b10% none
– 60–90% N95% branch loss
– 30% b15% b1%
– 70% 90% 100%
– 2.8 m – N5 m
FCOV
– 50% b10% none
– 60–90% N95% branch loss
– 30% b15% b1%
– 70% 90% 100%
– 4 m – N7 m
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effects are removed in ratio-based analyses does not necessarily hold
true (Veraverbeke et al., 2010; Verbyla et al., 2008). This was done
based on themodified c-correctionmethod (Veraverbeke et al., 2010),
a modification of the original c-correction approach (Teillet et al.,
1982), using a digital elevation model (DEM) and knowledge of the
solar zenith and azimuth angle at the moment of image acquisition.
Topographical slope and aspect data were derived from 90 m SRTM
(Shuttle Radar Topography Mission) elevation data (Jarvis et al.,
2006) resampled and co-registered with the TM images.

Finally, by inputting the NIR (TM4: centered at 830 nm) and MIR
(TM7: centeredat 2215 nm)bands inEq (1)NBR imagesweregenerated.

2.4. Moderate Resolution Imaging Spectroradiometer data

Level 2daily TerraMODIS surface reflectance (500 m)tiles that cover
the studyarea (MOD09GA) includingassociatedQualityAssurance (QA)
layers were acquired from the National Aeronautics and Space
Administration (NASA) Warehouse Inventory Search Tool (WIST)
(https://wist.echo.nasa.gov) for the period 01/01/2006 till 31/12/2008.
These products contain an estimate of the surface reflectance for seven
optical bands as it would have beenmeasured at ground level as if there
were no atmospheric scattering or absorption (Vermote et al., 2002).
The data preprocessing steps included subsetting, reprojecting, com-
positing, creating continuous time series and indexing. The study area
was clipped and the NIR (centered at 858 nm), MIR (centered at
2130 nm) and QA layers were reprojected into UTM with WGS 84 as
geodetic datum. Subsequently, the daily NIR, MIR and QA data were
converted in 8-day composites using the minimum NIR criterion to
minimize cloud contamination and off-nadir viewing effects (Holben,
1986). The minimumNIR criterion has proven to allow amore accurate
discrimination between burned and unburned pixels than traditional
Maximum Value Composites (MVCs) (Barbosa et al., 1998; Chuvieco et
al., 2005; Stroppiana et al., 2002). Thus, for each 8-day period the NIR,
MIR and QA data were saved corresponding with the minimum NIR
observation for eachpixel. An additional advantage of theminimumNIR
criterion in comparisonwithMVCs is its tendency to select close to nadir
observations (Stroppiana et al., 2002), because for smaller view angles
the soil fraction in the vegetation–soil matrix will have a relatively
higher contribution to the reflectance signal than for wider viewing
angles. After the compositing procedure a minority of the data still
lacked good quality values. Therefore, to create continuous time series, a
local second-order polynomial function, also known as an adaptive
Savitzky–Golay filter (Savitzky & Golay, 1964), was applied to the time
series as implemented in the TIMESAT software (Jonsson & Eklundh,
2004) to replace the affected observations. Although other smoothing
methods based on for example Fourier series (Olsson & Eklundh, 1994)
or least-squares fitting to sinusoidal functions (Cihlar, 1996) are known
to work well in most instances, they fail to capture a sudden steep
change in remote sensing values, as it is the case in burned land
applications (Verbesselt et al., 2006). The TIMESAT program allows the
inclusion of a preprocessing mask. These masks are translated into
weights, zero andone, that determine the uncertainty of the data values.
Cloud-affected observations were identified using the internal cloud
and cloud-adjacency algorithm flags of the QA layer. These flags consist
of binary layerswhichpermit to assigna zeroweightvalue to cloudy and
cloud-adjacent observations. Consequently these data do not influence
the filter procedure. Only the values of the masked observations were
replaced to retain as much as possible the original NIR and MIR
reflectance values. Finally, NBR images were calculated based on Eq. (1).

3. Methodology

3.1. MODIS pre-fire land cover map

As phenology, fire impact and regeneration typically vary by land
cover type (Reed et al., 1994; Viedma et al., 1997; White et al., 1996)
the pre-fire land cover of the burned areas was classified. This was
done based on the time series similarity concept as phenological
differences in time series allow to discriminate different land cover
types (Geerken et al., 2005; Lhermitte et al., 2008; Reed et al., 1994;
Viovy, 2000). Amaximum likelihood classificationwas performed on a
MODIS NBR time series of the pre-fire year 2006. The GPS-recorded
pixel and its bilinear neighbors of the 50 land cover field samples (see
Section 2.2 and Fig. 3) served as training pixels in the classification. As
such the four main land covers (shrub land, coniferous forest,
deciduous forest and olive groves) were classified. Fig. 4 displays the
mean temporal profiles of the training pixels for each class. Fig. 4A–C,
respectively of shrub land, coniferous forest and olive groves, reveal
characteristic temporal profiles for evergreen Mediterranean species.
For these land cover types seasonal fluctuations are minor. Coniferous
forests are characterized by a higher overall productivity than shrub
lands and olive groves. Shrub lands reveal a peak in late spring/early
summer, which is characteristic for Mediterranean xerophytic species
(Maselli, 2004; Specht, 1981). The olive groves are slightly more
productive during the winter season, which can be contributed to the
favorable moisture conditions during the wet winter months (see
Fig. 3). The temporal profile of deciduous forest (Fig. 4D) contrasts
with those of evergreen species as it shows a markedly higher sea-
sonalitywith a summermaximumandwinterminimum. The accuracy
of the pre-fire land cover map was verified by the 150 GeoCBI field
plots with known pre-fire land cover type. These plots were taken in
areas that were homogeneous in pre-fire fuel type for at least 500 m.

3.2. MODIS control pixel selection

Traditionally fire/burn severity is estimated from pre-/post-fire
differenced imagery (French et al., 2008; Key & Benson, 2005). This bi-
temporal analysismethod can be hampered by phenological effects, both
due to the differences in acquisition data and due to inter-annual
meteorological variability (Diaz-Delgado & Pons, 2001). To deal with
these phenological effects Diaz-Delgado and Pons (2001) proposed to
compare vegetation regrowth in a burned area with unburned reference
plots within the same image. As such, external and phenological
variations are minimized among the compared areas. The reference
plot selection procedure has, however, twomain difficulties. Firstly, large
scale application remains constrained due to the necessity of profound
field knowledge to select relevant control plots. Secondly, the reference
plot approach fails to describewithin-burn heterogeneity as it usesmean
values per fire plot. To solve these problems, Lhermitte et al. (2010)
proposed a pixel-based control plot selection method which follows the
same reasoning with respect to the minimization of phenological effects
by comparison with image-based control plots. The difference with the
reference plot procedure, however, is situated in the fact that the pixel-
based method assigns a unique unburned control pixel to each burned
pixel. This control pixel selection is based on the similarity between the
time series of the burned pixel and the time series of its surrounding
unburned pixels for a pre-fire year (Lhermitte et al., 2010). The method
allows toquantify theheterogeneitywithin afire plot since eachfirepixel
is considered independently as a focal study pixel and a control pixel is
selected from a contextual neighborhood around the focal pixel. In this
study, the procedure of Lhermitte et al. (2010) is followed as it allows
exploring the temporal dimension of post-fire effects without image-to-
image phenological constraints. The selection is based on the similarity of
MODISNBR time series betweenpixels during the pre-fire year 2006. The
averaged Euclidian distance dissimilarity criterion Dwas used:

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

t=1
NBRf

t−NBR
x
t

� �2

s

N
ð2Þ

where NBRt
f and NBRt

x are the respective burned focal and unburned
candidate control pixel timeseries,whileN is thenumberof observations



Fig. 4.Mean temporal profile (±sd) of (A) shrub land, (B) coniferous forest, (C) olive groves and (D) deciduous forest training samples used in the pre-fire land cover classification.
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in pre-fire year (N=46). The Euclidian distance metric has an intuitive
appeal: it quantifies the straight line inter-point distance in a multi-
temporal space as distancemeasure. As a result, it is robust for both data
space translations and rotations. Consequently, it is a very useful metric
to assess inter-pixel differences in time series (Lhermitte et al., 2010).
Thediscrimination between burned and unburned pixelswas based on a
burned areamap. This burned areamapwas extractedmaking use of the
characteristic persistency of the post-fire NBR drop, similar to the
algorithms of Kasischke and French (1995), Barbosa et al. (1999) and
Chuvieco et al. (2008). To avoid possible confusion with harvested crop
land a rough fire perimeter, approximately 1 km outside of the burned
area, was manually digitized. Using the 8-day NBR composites as input,
the dNBR between each single observation and its five consecutive
observations in time was calculated (dNBR=NBRt−NBRt+ i with i=1,
2, 3, 4, 5).When these five dNBR values all exceeded the threshold value
of 0.125, the pixel was classified as burned. We have chosen a relatively
low threshold tominimize the omission error on low severity pixels. The
accuracy of theburned areamapwas verifiedusing a TM-derivedburned
area map (Veraverbeke et al., 2010).

For valid control plot estimates, control pixels must correspond to
the focal pixel in case the fire had not occurred. Firstly, this implies
identical pre-fire characteristics for both control and focal pixels.
Secondly, it means similar post-fire environmental conditions. To
determine the appropriate control pixel selection criteria, the method
of Lhermitte et al. (2010) was calibrated to our dataset based on post-
fire similarity, since we wish to estimate how the NBR would have
behaved in case of no fire occurrence. In this context, the accuracy of
the control pixel selection is assessed by looking at the i) pre- and
post-fire similarity of fictively burned pixels and ii) pre-fire similarity
of effectively burned pixels. The first approach allows to effectively
assess how parameters c, the number of control pixels, and x, the
number of candidate pixels, and w×w, the window size around the
focal pixel, affect the post-fire similarity, where x and w×w can be
used interchangeably as they are linearly related by x=w2−1. The
second approach allows to assess how the spatial context of actual
burns affects the similarity when x andw×w cannot be interchanged.

In the first approach, a similarity analysis was performed to
understand how the post-fire similarity is affected by varying numbers
of selected control pixels (c) and selectionwindows sizes (w×w). In this
context, 500 unburned pixels were randomly selected and a fictive
burningdatewas set for these pixels at the samecomposite date the real
fire event took place. Subsequently, the sensitivity of dissimilarity
criterion D to c and w×w was assessed for each of these pixels by
comparing theoutcome forvaryingnumberof control pixels (c=1, 2,…,
15) and varying window sizes (3×3, 5×5,…, 25×25). Evaluation
consisted of measuring the temporal dissimilarity for the 500 fictively
burned sample pixel betweenNBRtf andNBRt

x one-year pre-fire and one-
year post-fire. This allows to determine how well pre-fire similarity is
maintained after a fictive burning date and how pre-/post-fire changes
in similarity are related to the number of control pixels (c) andwindow
size (w×w)/number of candidate pixels (x).

Although for isolated burned pixels window size and the number
of candidate pixels are linearly related, it is impossible to work
with fixed window sizes in the spatial context of actual burns where
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burned areas consist of large patches and not all neighboring pixels
are candidate pixels. For example, in the first approach eight
candidate pixels are found in 3×3-window (nine pixels minus one
burned pixel), while for finding eight candidate pixels for a burned
pixel located in the middle of a large burn larger window sizes are
required. As a result, the distance of the control pixels to their
corresponding focal pixel is variable. Therefore, also the second
approach was analyzed, where the pre-fire similarity of 500 randomly
chosen effectively burned pixels was evaluated taking into account
the spatial context of the actual burns. Comparison of the pre-fire
similarity of 500 effectively burned and 500 fictively burned pixels
then allows verifying how the selection is influenced by the spatial
context of the actual burns.

3.3. dNBR and optimality

After the derivation of preprocessed TM NBR images, these layers
were bi-temporally differenced. This traditional bi-temporal
differencing resulted in an IA and EA dNBR, respectively dNBRTM,IA

and dNBRTM,EA:

dNBRTM;IA = NBRTM;2006−NBRTM;2007 ð3Þ

dNBRTM;EA = NBRTM;2006−NBRTM;2008: ð4Þ

Additionally, a MODIS dNBR time series was derived after
differencing the respective focal (NBRt

f) and control (NBRt
c) images:

dNBRt = NBRc
t−NBRf

t : ð5Þ

Thus, in contrast with the traditional pre-/post-fire differencing as
applied on the TM imagery, the MODIS dNBR was calculated based on
focal and control pixels within the same image. For the same post-fire
dates as with the TM dNBR images, the MODIS dNBR images were
respectively labeled as dNBRMODIS,IA and dNBRMODIS,EA.

For evaluating the optimality of the bi-temporal change detection
theMIR–NIR bi-spectral space was considered (see Fig. 5). If a spectral
index is appropriate to the physical change of interest, in this case fire-
induced vegetation depletion, there exists a clear relationship
between the change and the direction of the displacement in the bi-
spectral feature space (Verstraete & Pinty, 1996). In an ideal scenario a
pixel's bi-temporal trajectory is perpendicular to the first bisector
of the Cartesian coordinate system. This is illustrated in Fig. 5 for
the displacement from unburned (U) to optimally (O) sensed burned.
Fig. 5. Example pre/post-fire trajectory of a pixel in the MIR–NIR feature space. A pixel
displaces from unburned (U) to burned (B). O resembles the position of an optimally
sensed burned pixel. The dNBR is sensitive to the displacement |UO| and insensitive to
the displacement |OB|.
Perturbing factors decrease the performance of the index. Then a
pixel's displacement can be decomposed in a vector perpendicular to
the first bisector and a vector along the post-fire NBR isoline to which
the index is insensitive. For example, in Fig. 5, a pixel shifts from
unburned (U) to burned (B) after fire. Here, the magnitude of change
to which the index is insensitive is equal to the Euclidian distance |OB|.
Thus the observed displacement vector UB can be decomposed in the
sum of the vectors UO and OB, hence, following the expression of Roy
et al. (2006) index optimality is defined as:

optimality = 1− jOBj
jUBj : ð3Þ

As |OB| can never be larger than |UB|, the optimalitymeasure varies
between zero and one. If the optimality measure equals zero, then the
index is completely insensitive to the change of interest. An optimality
score of one means that the index performs ideally.

3.4. Analysis method

Firstly, the accuracy of the land cover map and the calibration of
the control pixel selection procedure are verified. Secondly, the
analysis has focused on the correlation between field and TM data for
an IA and EA. In addition descriptive dNBR and optimality statistics
were compared. To justify the use of MODIS dNBR to explore the
temporal dimension the correlation between downsampled TM and
corresponding MODIS dNBR imagery is also calculated. Finally, MODIS
dNBR and optimality time series for different land cover types are
compared. Emphasis has been both on the importance of lag and
seasonal timing of an assessment.

4. Results

4.1. MODIS pre-fire land cover map

Fig. 6 displays the pre-fire land cover map derived based on the
time series similarity concept. Shrub land was the most prevailing
Fig. 6. Pre-fire land cover map obtained after performing a maximum likelihood
classification on aMODIS NBR time series of the pre-fire year 2006 (temporal profiles of
training samples are given in Fig. 4).
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land cover type. 100,372 ha (56.65% of the burned area) were
classified as shrub land. The class coniferous forest covered
37,096 ha (20.95% of the burned area) which was only slightly more
than the olive groves class (34,555 ha, 19.50% of the burned area). A
minority of the pixels were classified as deciduous forest (624 ha,
2.90%). The error matrix of the land cover map is tabulated in Table 2.
The overall accuracy of the classification equalled 73% and a Kappa
coefficient of 0.60 was obtained. As the phenology of deciduous forest
contrasts with those of evergreen land cover classes (see Fig. 4), this
class obtained high producer's and user's accuracies of respectively
81% and 93%. The evergreen land cover classes revealed a higher time
series similarity. As a result these cover classes were prone to higher
omission and commission errors. These errors remained, however,
acceptable. The classification of shrub land resulted in both a
producer's and user's accuracy of 75%. The producer's accuracy of
coniferous forest equalled 72%, which was slightly lower than its
user's accuracy of 76%. Finally, the accuracy of olive groves class was
the lowest (producer's and user's accuracy of respectively 64% and
47%).

4.2. MODIS control pixel selection

TM imagery was used to validate the MODIS burned area map. The
TM-derived burned area map was derived after applying a two-phase
dNBRTM,IA threshold algorithm that was validated using field
reference data resulting in a detection probability of 80% and a
probability of false alarm of 5% (Veraverbeke et al., 2010). MODIS
burned area statistics were extracted in windows of 10 by 10 km.
These statistics were regressed against their TM equivalents, in which
the TM data acted as independent variable and the MODIS data as
dependent variable. The resulting regression slope and intercept
equaled respectively 1.31 and −27.97. The MODIS-derived burned
area map correlated fairly well with the TM-based map (coefficient of
determination R2=0.98, pb0.001), although a consistent overesti-
mation relative to the TM data was perceived as indicated by the
regression slope of 1.31.

Fig. 7A reflects the D in function of varying number of control pixels
and window size for a pre-fire year. It shows the median temporal
similarity of the 500 unburned sample pixels. The median is used
instead of themean as it ismore robust in the presence of outlier values.
Two main effects are observed in the figure. Firstly, the number of
control pixels chosen influenced the dissimilarity measure due to an
averaging effect. The strength of this averaging effectwas dependent on
window size: the averaging effect became more important for larger
window sizes. Secondly, there was a consistently decreasing trend in
pre-fireDwhenwindow size enlarged. This feature appeared regardless
of the number of control pixels chosen. The latter finding contrasts with
what is visible in Fig. 7B, which represents the post-fire D in function of
varying number of control pixels and window size. Here, one can see a
consistently increasing trend in D as window size became larger. As a
result, differences between pre- and post-fire similarity enlarged in
proportion with window size. This effect originates from the possible
selection of distant pixels that have higher probability of showing
Table 2
Error matrix of the pre-fire land cover map (accuracy verified based on 150 reference
points). The overall accuracy (0.73) and the Kappa coefficient (0.60) are indicated in bold.

Reference data User's accuracy

S O D C

Classified data S 47 5 1 10 0.75
O 3 9 1 6 0.47
D 1 0 13 0 0.93
C 12 0 1 41 0.76

Producer's accuracy 0.75 0.64 0.81 0.72 0.73
Kappa 0.60
different post-fire environmental conditions in larger windows (Lher-
ermitte et al., 2010). Fig. 7C displays pre-fire similarity of the 500 burned
sample pixels. The x-axis is expressed in terms of the number of
candidate pixels instead of window size, because the spatial context of
actual burns makes windows size variable. The abscissas of Fig. 7C
correspondwith thenumberof candidate pixels present in thewindows
mentioned in Fig. 7A–B. Similar to what is observed in Fig. 7A, one can
see both an averaging effect and consistently decreasing D for an
increasing number of candidate pixels. The main difference between
Fig. 7A and C is that overall, dissimilarity D is higher in Fig. 7C.

In these figures one can infer that (i) the post-fire similarity is
higher for small windows (less candidate control pixels) than for
larger windows (more candidate control pixels), (ii) averaging of
more than three pixels results in a higher temporal similarity than
using less than four control pixels, (iii) the trends in pre-fire similarity
(averaging effect and increasing similarity for increasing number of
candidate pixels) are the same as for the fictive and effective burned
pixels. These findings combined with the consideration that it is
impossible to work with fixed window due to the spatial context of
actual burns (e.g., to retrieve eight candidate pixels relatively small
windows are necessary near the contours of a burn, whereas larger
window sizes are required for burned pixels in the middle of a large
fire scar) govern the final decision criterion to determine control
pixels. Based on these considerations the control pixel selection
criterion was defined as taking the average of the four most similar
pixels out of eight candidate pixels, which corroborates with the
findings of Lhermitte et al. (2010). This criterion combines the need
for proximate pixels and beneficial averaging.

4.3. Relationship between field, TM and MODIS data

Table 3 lists some descriptive statistics as derived from the
dNBRTM,IA, dNBRTM,EA dNBRMODIS,IA and dNBRMODIS,EA layers. Mean
dNBR was clearly higher for an IA than for an EA, for both TM and
MODIS assessments (0.56 vs. 0.29 for TM, 0.44 vs. 0.21 for MODIS).
The same was true for mean optimality (0.65 vs. 0.47 for TM, 0.68 vs.
0.50 for MODIS). The standard deviation (sd) of the dNBR sd was also
higher in IA than in EA (0.29 vs. 0.19 for TM, 0.19 vs. 0.14 for MODIS).
This contrasts with the lower optimality sd of IAs compared to EAs
(0.25 vs. 0.29 for TM, 0.24 vs 0.30 forMODIS). Mean and sd dNBRwere
higher for TM assessment than for MODIS assessments. Mean
optimality, however, was slightly higher for MODIS assessments,
while inter-sensor differences in sd optimality were minor.

Table 4 summarizes the regression results between field, TM and
MODIS data. All results were based on 150 observations, corresponding
to the GeoCBI locations. Comparison of the R2 statistics shows that the
GeoCBI–dNBRTM relationship proved to be the strongest for the IA
scheme. This relationship yielded amoderate–highR2=0.72 for a linear
fitting model. This is higher than the GeoCBI–dNBRTM,EA correlation
which had an R2=0.56. After downsampling the TM pixels to the
MODIS resolution, linear regressions were also performed between the
downsampled TM and theMODIS dNBR. These regressions resulted in a
moderate correlations of R2=0.59 for the IA and R2=0.45 for the EA
scheme.

4.4. Post-fire MODIS dNBR and optimality time series per land cover type

Figs. 8–11 show the temporal profiles of meanNBR (±sd) of control
and focal pixels (A), mean dNBR (±sd) (B) andmean optimality (±sd)
(C) of respectively shrub land, olive groves, coniferous forest and
deciduous forest. The control pixels' meanNBR of the evergreen species
(shrubs, olives and conifers) showed little seasonal variations, which
accords with and Fig. 4 and statements in Section 3.1. In contrast, the
temporal development of the mean NBR of deciduous forest was
dominated by a clear summer maximum and winter minimum. These
dissimilarities in seasonality between evergreen and deciduous land



Fig. 7. Median dissimilarity D of the 500 fictively burned sample pixels in function of
varying number of control pixels and window size for (A) a pre-fire year, for (B) a post-
fire year (for the post-fire year, the same control pixels setting as in the pre-fire year is
preserved) and median dissimilarity D of the 500 burned sample pixels in function of
varying number of control pixels and candidate pixels for a pre-fire year (C). The
grayscale reflects the temporal similarity, while the white areas in the upper-left corner
represent impossible combinations (number of control pixelsN8, for 3×3 window
size).

Table 3
Descriptive dNBR and optimality statistics of the TM and MODIS IA and EA.

TM MODIS

IA EA IA EA

Mean dNBR (±sd) 0.56 (0.29) 0.29 (0.19) 0.44 (0.19) 0.21 (0.14)
Mean optimality (±sd) 0.65 (0.25) 0.47 (0.29) 0.68 (0.24) 0.50 (0.30)

Table 4
Linear regression results between on the one hand GeoCBI field data and dNBRTM, on
the other between downsampled dNBRTM and dNBRMODIS in both IA and EA schemes
(n=150, pb0.001).

Model form a (±sd) b (±sd) R2

GeoCBI=a×dNBRTM,IA+b 0.649 (0.033) 1.455 (0.019) 0.72
GeoCBI=a×dNBRTM,EA+b 0.767 (0.056) 1.508 (0.018) 0.56
dNBRTM,IA=a×dNBRMODIS,IA+b 0.067 (0.037) 0.804 (0.069) 0.59
dNBRTM,EA=a×dNBRMODIS,EA+b 0.035 (0.022) 0.730 (0.082) 0.45
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cover impact the dNBR and its optimality. Recovery processes were
prevalent for the evergreens (Figs. 8–10). As a result mean dNBR (and
sd) andmeanoptimality progressively decreased as timeelapsed. Shrub
land (Fig. 8) and olive groves (Fig. 9) revealed very similar temporal
patterns. Recovery peaked during early spring (April–May), which is
characteristic for xerophytic species in theMediterranean. This caused a
clear drop in both mean dNBR and mean optimality. The absolute
magnitude of change was slightly higher for coniferous forest (mean
dNBR up to 0.60) than for shrubs and olive groves (mean dNBR up to
0.50). Immediately post-fire mean optimality was higher than 0.70 for
the evergreen cover types. However, the optimality statistic clearly
dropped after twomonths post-fire. Conversed to the evergreens, inter-
annual variations are important in deciduous forest. Immediately post-
fire the difference between the control and focal pixels' mean NBR
values is large. This difference diminished as time elapsed due to two
main processes. Firstly, leaf-fall caused the control pixels' index to drop.
Secondly, regeneration processes produced an increase of the focal
pixels' NBR values. By the start of the next growing season, however, the
difference between control and focal pixels became againmore explicit.
The abovementionedprocesses alsoprovoked a clear seasonality inboth
temporalmeandNBR (Fig. 11B) and optimality (Fig. 11C). Initiallymean
dNBR valueswere (up to 0.60) highwith corresponding high optimality
scores (up to 0.70). During winter mean dNBR values were very low
(minimum of 0.10) was reached, and this also resulted in low mean
optimality scores below 0.40. By the onset of next growing season both
mean dNBR and optimality recovered.

5. Discussion

5.1. Control pixel selection

The strength of the control pixel selection procedure is that the
post-fire temporal behaviour of the NBR, dNBR and optimality is
estimated on a per-pixel-basis and free of image-to-image normal-
ization constraints. The method relies on pre-fire time series
similarity between focal burned pixels and unburned control pixels
where themain driver of the control pixel selection setting is post-fire
similarity, since we wish to estimate how the NBR would have
behaved in case of no fire occurrence. In this context, the control pixel
selection settings can only be assessed by looking at the post-fire
similarity of fictively burned pixels in Fig. 7B. In this figure, one can see
two effects: i) the similarity is clearly higher for small windows than
for larger windows and ii) averaging of more than three pixels results
in a higher temporal similarity than using less than four control pixels.
The former effect arises from the possible selection of distant pixels
with different post-fire meteorological conditions for larger window
sizes (Lhermitte et al., 2010). Our recommendation to select control
pixels in close vicinity to the burned areas corroborates with findings
of Li et al. (2008) and fulfils the general rule that terrain features in a
close vicinity aremore likely to be similar thandistant features (Tobler,
1970). The latter effect arises from beneficial averaging, which is
rather remarkable as one would expect that the use of only the most
similar pixel would give the best result. However, noise reduces the
similarity between the most similar control and the focal pixel. Even
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Fig. 8. Time series of (A) mean NBR of control and focal pixels, (B) mean dNBR and (C) mean optimality (C) shrub land pixels before the fire event. The vertical bars indicate the sd.
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after preprocessing, a certain amount of randomnoise remains present
in the data set. Averaging the two or moremost similar pixels causes a
more temporally stable signal because random noise is averaged out
resulting in ahigher temporal similaritywith the focal pixel (Lhermitte
et al., 2010). This beneficial averaging effect is, however, finite as at a
certain point non-similar pixels will also be included in the averaging
process, which will deteriorate the similarity.

Although post-fire similarity determines the settings of the
procedure, the selection of the pixels itself needs to be executed on
pre-fire time series. In both Fig. 7A and C similarity increases for larger
window sizes. This effect, however, is not relevant as the spatial
heterogeneity in for example meteorology has a large inter-annual
variability. This is why post-fire similarity in Fig. 7B, although based on
the same settings as pre-fire similarity in Fig. 7A, decreases with
increasing window size. Combination of both the favorable post-fire
similarity in small windows and the existence of a beneficial averaging
effect govern the final decision to select four control pixels out of eight
candidate pixels.

The calibration experiment on the 500 fictively burned pixels does
not mimic the spatial context of the actual burns. The calibration
experiment is based on isolated pixels, while in reality burned areas
consist of several large patches. For burned pixels, who are partly
surrounded with other burned pixels, larger windows than a 3×3-
window are required to retrieve eight control pixels. This makes the
windowsize dependent on the position of the burned pixel in its patch.
For pixels close to the fire perimeter window size will be relatively
small, whereas for pixels in the middle of a large burn window sizes
need to larger. As nearby pixels have a higher probability to be similar
than distant pixels (Li et al., 2008; Tobler, 1970), the spatial context of
the actual burns results in a lower similarity than what was observed
in the calibration experiment based on fictively isolated pixels (Fig. 7A
and C). Pre-fire similarity retrieved from the 500 burned pixels in
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Fig. 9. Time series of (A) mean NBR of control and focal pixels, (B) mean dNBR and (C) mean optimality (C) olive groves pixels before the fire event. The vertical bars indicate the sd.
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function of the number of candidate pixels and the number of control
pixels is, however, characterized by the same trends as observed in the
calibration experiment. One can expect that if it would be possible to
calculate post-fire similarity on the actual burns, the same trends,
probably with a slightly lower overall similarity, of the calibration
experiment (Fig. 7B) would manifest.

Despite of the merits of the control pixel selection procedure as
presented in this paper two constraints remain. Firstly, due to the
necessity to search in larger windows for pixels in the middle of the
burn the performance of the procedure is likely to be better near the
contours of the burn perimeter. On the one hand this is inevitable as
the potentially most similar neighbor pixels are also burned. On the
other hand one could argue that this phenomenon incites to make the
control pixel selection settings dependent on the distance to the fire
perimeter. The procedure is also affected by a second constraint, i.e.
the heterogeneity of the unburned landscape matrix. It is trivial that
the procedure will be more optimal in highly homogeneous land-
scapes, even for large search windows. In contrast, in highly
heterogeneous mixtures of different land cover types the procedure
will potentially fail to retrieve similar pixels for small window sizes. It
is a hard task to uncouple and quantify the effects of both constraints.
Solutions to this have the potential to further improve the selection
procedure.

5.2. Lag timing

Regression results between dNBRTM and field data were clearly
influenced by the lag timing of the assessment (Table 4). Although
this corroborates with the findings of Zhu et al. (2006) and Allen and
Sorbel (2008), it contrasts with Fernandez-Manso et al. (2009) who
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Fig. 10. Time series of (A) mean NBR of control and focal pixels, (B) mean dNBR and (C) mean optimality (C) coniferous forest pixels before the fire event. The vertical bars indicate
the sd.
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state that the difference between an IA and EA does not significantly
influences the remotely sensed magnitude of change. In our study the
correlation between field and TM data was better for the IA
(R2=0.72) than for the EA (R2=0.56), which is opposite to the
observations of Zhu et al. (2006). Following these authors, however,
the poorer regression fits for IA are merely attributed to unfavorable
remote sensing conditions (low sun angles, smoke, bad weather,
snow and clouds), and not necessarily to differences in lag timing.
Additionally, Allen and Sorbel (2008) found that initial and extended
assessments produced significantly different informationwith regards
to burn severity for tundra vegetation, while the timing of the assess-
ment had no effect for black spruce forest, which was attributed to the
rapid tundra recovery. As in our study, this demonstrates that in
quickly recovering ecosystems first-order effects such as vegetation
consumption, scorching and charring are mitigated by resprouters
(Key, 2006; Lhermitte et al., submitted for publication). This is also
visible when the magnitude of change and the within-burn variation
between IA and EA schemes are compared (Table 3). For both TM and
MODIS assessment, mean dNBR almost halved whereas sd dNBR was
also clearly lower for the EA. This reduction in variability highly
impacts the suitability of the dNBR for burn severity mapping. The
within-burn variation of the MODIS assessments was lower than with
TM assessment as a result of the 500 m resolution compared to the
30 m resolution of the TM sensor. Correlations between downsampled
dNBRTM and corresponding dNBRMODIS weremoderate, which justifies
the use of MODIS NBR time series as a way of exploring the temporal
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Fig. 11. Time series of (A) mean NBR of control and focal pixels, (B) mean dNBR and (C) mean optimality (C) deciduous forest pixels before the fire event. The vertical bars indicate
the sd.
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dimension of remote sensing of post-fire effects. We are aware that by
doing so spatial heterogeneity is sacrificed to somedegree (Key, 2006).
Differences between downsampled dNBRTM and dNBRMODIS can be
attributed to the use of single-data imagery vs. 8-day composites,
discrepancies between traditional bi-temporal differencing and
control pixel selection procedure, differences in preprocessing (e.g.
modified c-correction vs. no topographic correction), MODIS's geolo-
cation error (Wolfe et al., 1998), etc.

Previous studies have analyzed the dNBR's optimality for assessing
fire/burn severity, most of them based on Landsat imagery (Escuin et
al., 2008; Murphy et al., 2008; Roy et al., 2006; Veraverbeke et al.,
2010, in press—b). This resulted in a moderate mean optimality of
0.49 (Escuin et al., 2008) and between 0.26 and 0.80 for six burns in
Alaska, United States (Murphy et al., 2008). Clearly lower mean dNBR
optimality scores (0.10) were reported by Roy et al. (2006) for African
savannah burns. These authors also report low dNBR optimality
values for MODIS sensed fires in other ecosystems (Russia, Australia,
South America). These results suggest that the dNBR is suboptimal for
assessing fire/burn severity. The poor optimality results obtained by
Roy et al. (2006) can partly be explained by the fact that the authors
also included unburned pixels in their analysis. Unaffected pixels are
generally associated with low optimality scores since a pixel's shift in
the bi-spectral space is then only caused by noise (Escuin et al., 2008).
Veraverbeke et al. (2010) revealed the influence of illumination
effects on dNBR optimality after which they proposed a topographic
correction that significantly improved the reliability of the assess-
ment. Despite of the merits of these studies, none of them researched
the time-dependency of the optimality statistic. The descriptive
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optimality statistics (Table 3) reveal the influence of assessment
timing on the performance of the dNBR. The IAs had clearly higher
optimality scores than EAs, e.g. for the TM assessment respectively
0.65 (±0.25) and 0.47 (±0.29). Mean optimality values achieved
maximum values the first two months post-fire (Figs. 8C, 9C, 10C and
11C). At the moment of maximum optimality, the sd of the optimality
statistic reached its minimum elucidating its stability. Based on the
optimality statistic one can indicate the first two months post-fire as
the best period to assess post-fire effects, at least in this study. This
period also corresponds with the highest magnitude of change in
dNBR (Figs. 8B, 9C, 10C and 11C) and with a relatively high degree in
variation. Results based on our TM data slightly differ from previously
published outcomes based on the same data (Veraverbeke, in press—
a,b, 2010), mainly because of some minor changes in satellite
preprocessing and the exclusion of 10 unburned field plots.

5.3. Seasonal timing

An important recommendation when doing bi-temporal change
detection is that the image couple should approximate as closely as
possible the anniversary date acquisition scheme (Coppin et al.,
2004). This diminishes illumination differences and phenological
dissimilarities. Because of Landsat's infrequent acquisition of cloud-
free imagery (Ju & Roy, 2008) bi-temporal acquisition schemes
potentially diverge from the ideal anniversary data scheme. This
causes problems as external influences (e.g. illumination conditions,
plant phenology) then distort the evaluation of post-fire effects
(Veraverbeke et al., 2010; Verbyla et al., 2008). Verbyla et al. (2008)
demonstrated false trends in dNBR as a consequence of combined
seasonal and topographic effects, while Veraverbeke et al. (2010)
recommended performing topographic corrections, even for ratio-
based analysis, as the general assumption that ratioing reflectance
data removes shade effects does not necessarily hold true. These
issues are merely concerned with traditional image-to-image nor-
malization constraints (Song & Woodcock, 2003). The application of
the control pixel selection procedure, however, makes the MODIS
dNBR time series free of these limitations (Diaz-Delgado & Pons, 2001;
Lhermitte et al., 2010). Comparison of Figs. 8–11 discloses some
important findings. Firstly, only slight differences in assessment
timing can result in distinct index values. On the one side this results
from recovery processes (see Section 5.2), but on the other side
seasonal changes in both control and focal pixels are also important. In
our study area for example, the herbaceous resprouters show a clear
rise in NBR values during spring, which is a period of favorable hydro-
thermic conditions (Fig. 3, Specht, 1981; Maselli, 2004). As a con-
sequence corresponding dNBR and optimality values drop during this
period. In the one-year post-fire summer productivity of regenerating
plants diminishes again which results in a generally better index
performance. Secondly, phenological patterns can greatly vary
between different land cover types (Lhermitte et al., 2008; Reed et
al., 1994; Viovy, 2000). Fig. 11A, which displays the NBR time series of
deciduous forest, contrasts with those of Figs. 8A, 9A and 10A. This is
because the evergreen land cover types (shrub land, coniferous forest
and olive groves) typically have a productivity that remains more or
less stable throughout the year while deciduous forest is characterized
by a clear winterminimum and summermaximum. As a consequence,
while the seasonal timing of an assessment produces only small
differences for evergreen species, it is crucial for deciduous forest.
When this consideration is forgotten, an assessment in deciduous land
cover types risks to measure plant phenology (e.g. leaf senescence)
instead of the fire effects, which can falsify fire/burn severity
estimations. Similar findings were achieved by Lhermitte et al.
(submitted for publication). In this study, conducted in a savanna
environment, intra-annual changes in index values were dominated
by the grass layer. The assessment was therefore strongly influenced
by its seasonal timing. Summarized for our study area, a Mediterra-
nean-type ecosystem (MTE) with a mixture of land covers, the
summer period is preferential for fire/burn severity assessments. This
timing reduces the occurrence of phenological discrepancies between
different land covers.

5.4. Implications for Landsat dNBR fire/burn severity assessments

Increasingly, fire researchers become interested in detecting
trends in fire/burn severity (Eidenshink et al., 2007; Miller et al.,
2008; Verbyla et al., 2008). To fulfill this duty it is of paramount
importance that assessment are comparable across space and time.
The relative version of the dNBR (RdNBR), which is defined as the
dNBR divided by the square root of the pre-fire NBR, hypothetically
allows a better comparison among different land cover types,
especially in heterogeneous landscapes. This was made clear for
fires in conifer dominated vegetation types in California, USA (Miller
et al., 2009). Whereas the hypothetical advantage of the relative index
to account for spatial heterogeneity has an intuitive appeal, the index
does not handle temporal differences which may be present among
different assessments. In this respect our study demonstrates that
only small differences in Landsat acquisition timing can result in
significantly other dNBR and optimality values. This results from both
lag and seasonal constraints. The latter requires a profound knowledge
of the covers affected by the fire and their phenological development,
especially when the land covers reveal dissimilar intra-annual
patterns. Lag timing is important as vegetation regrowth mitigates
first-order fire effects (Key, 2006; Zhu et al., 2006). This affects the
magnitude of change, the variability and the index performance of
what is actually measured. For our Mediterranean study area,
correlation with field data, dNBR variability and optimality were
clearly higher for an IA than for an EA. Additionally, optimality was the
highest the first two months post-fire. In other ecosystems, however,
EAs trended better with field data (Zhu et al., 2006). The NBR was
originally developed for the use in temperate and boreal ecosystems
(Key & Benson, 2005; Eidenshink et al., 2007; French et al., 2008
among them), which are characterized by a relative slow recovery
(Cuevas-Gonzalez et al., 2009). For these ecoregions it is plausible that
lag timing not significantly alters the information content of an
assessment. The lag timing of assessment in quickly recovering
ecosystems, however, determines how post-fire effects are measured.
Fire severity is estimated with better contrast and higher reliability,
while first-order effects are obscured by regeneration processes when
assessing burn severity. This incites caution for the use of the NBR for
assessing burn severity in quickly recovering ecosystems.

Of course bi-temporal Landsat assessments are limited by the
infrequent image availability (Ju & Roy, 2008). Moreover, whether or
not ecosystem responses are included in the study makes an
important ecological difference and depends on the goals of the
project.Within these limitations, however, one should be aware of the
temporal dimension of the remote sensing of post-fire effects. In this
context, we urge for a transparent and consistent use of terminology
as presented in Fig. 1. In this we follow Lentile et al. (2006) who
suggested a substantial difference between the terms fire and burn
severity. From a remote sensing point of view, our results support this
important difference and question the recommendation of Keeley
(2009) to treat both terms as mutually interchangeable. Both terms
assess the direct fire impact but only burn severity includes ecosystem
responses.

6. Conclusions

The goal of this paper was to elaborate on the temporal dimension
of dNBR fire/burn severity studies. In this context fire severity was
defined as the degree of environmental change caused by fire as
measured immediately post-fire, whereas burn severity combines the
direct fire impact and ecosystem responses. The study made use of
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field, TM andMODIS data. An IA and EAwere calculated based on pre-/
post-fire differenced TM imagery. Additionally a MODIS dNBR time
series was generated by using the control pixel selection procedure.
This procedure uses the time series similarity concept to assign a
unique control pixel to each burned pixel, which allows differencing
within the same image. The large 2007 Peloponnese (Greece)wildfires
were chosen as case study.

Results showed a clearly better correlation with field data for the
IA than for the EA. In addition, the magnitude, variability and
optimality of the dNBR were better early post-fire than one-year
post-fire. Moreover, the highest index optimality was reached the first
two months post-fire. In quickly recovering ecosystems, thus,
regeneration processes mitigate first-order fire effects, which can
obscure burn severity estimations. This demonstrates the influence of
the lag timing of an assessment. Results also revealed that land cover
specific intra-annual variations influence to a high degree dNBR and
optimality outcomes. For example in the Mediterranean, favorable
hydro-thermic conditions during spring enhance the productivity of
herbaceous species in the burned areas. This, however, makes the
dNBR unsuitable to measure fire effects during this period. As such, an
appropriate seasonal timing of an assessment is of paramount
importance to minimize false trends. Although these findings are
specific to our case study, similar temporal constraints can be
expected in other ecoregions. Our findings urge, within the limitations
of available Landsat imagery, for awareness of the temporal
dimension in the remote sensing of post-fire effects. In this context,
we also propose clarification in associated terminology.
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