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Abstract: Better insights into bird migration can be a tool for assessing the spread of avian 
borne infections or ecological/climatologic issues reflected in deviating migration patterns. 
This paper evaluates whether low budget permanent cameras such as webcams can offer a 
valuable contribution to the reporting of migratory birds. An experimental design was set up 
to study the detection capability using objects of different size, color and velocity. The 
results of the experiment revealed the minimum size, maximum velocity and contrast of the 
objects required for detection by a standard webcam. Furthermore, a modular processing 
scheme was proposed to track and follow migratory birds in webcam recordings. 
Techniques such as motion detection by background subtraction, stereo vision and lens 
distortion were combined to form the foundation of the bird tracking algorithm. Additional 
research to integrate webcam networks, however, is needed and future research should 
enforce the potential of the processing scheme by exploring and testing alternatives of each 
individual module or processing step. 
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1. Introduction 

The monitoring of birds has a widespread potential in numerous applications in ecology, 
climatology, and avian related zoonosis/infections such as avian influenza [1-5]. Migratory birds are 
known to be carriers of the birds’ flu, caused by type A of the influenza virus H5N1 [2] and they can 
infect domesticated birds [6,7]. This virus can cause severe disease in humans, but at present it cannot 
transmit easily from person to person [8], although fatal human cases were reported [7,9]. By 
monitoring wild bird migration a better understanding of the flyways used by the various avian species 
can be gained [10-12]. A network of cameras/webcams for reporting of migratory birds can be 
explored in this context, since webcams and more sophisticated cameras were previously used for 
other monitoring objectives, such as for instance traffic monitoring, security applications and the 
military [13].  

Various techniques for bird monitoring already exist and some of them are more time-consuming 
and expensive than others. Direct observation is the simplest and oldest technique and may 
differentiate migratory birds based on size, color, song and flight characteristics [14]. Slight 
modifications allow also night observations (moon-watching technique [14,15]) by applying terrestrial 
vertical light beam or ceilometer techniques [16]. The use of passive infrared cameras (measuring 
avian body heat) allows cloudy night observation and reduces disturbances due to artificial  
light [17,18]. Capture-recapture techniques also can provide valuable information about bird  
migration [14,19] but less than 1% of the non-hunted species are ever recorded again [14]. Radio 
tracking or telemetry is another method to monitor birds [20,21]. A small radio transmitter is attached 
to the bird and sends a periodic beep signal which is tracked down. Birds, however, with an attached 
device have a significantly lower survival rate. More recently this technique evolved to GPS-tracking 
which rules out some of the limitations of radio tracking [12,22]. Another approach for bird detection 
is the use of acoustic based technology to identify bird specific signatures such as drums from 
woodpeckers [23]. Also radar based monitoring technology is used for bird detection, although the 
coarse spatial resolution is a limiting factor [24].  

Novel tools for bird monitoring are using distance retrieval from stereo vision and motion detection. 
Stereo vision is used in several domains where depth is essential, for instance in robot-computer  
vision [25], traffic flow control [26] or in ecological studies such as fish size measuring [27,28] or to 
rediscover extinct birds such as the Ivory-billed Woodpecker (Campephilus principalis) in the  
US [23]. Most methods are based on the knowledge of the disparity and the angle between the cameras 
and the object [28]. Background subtraction is a common approach to detect moving objects in a 
sequence of images or videos. It consists of comparing each frame with background model and 
retaining the foreground pixels that differ significantly from the background. This technique is often 
implemented in computer vision applications, video surveillances, traffic monitoring and human 
tracking [30-32].  
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In this study the potential of permanent cameras such as webcams for bird detection is analyzed. 
Webcams are low-cost cameras, can be adapted to be robust to weather conditions, and have the ability 
of remotely-control and unsupervised operation capabilities. As such, they can be used as first analysis 
tool for tracking moving objects. With this demonstration study, we aim to sensitize readers on the 
potentials of webcams for a variety of applications of monitoring moving objects. In this context, a 
measuring protocol is proposed consisting of lens correction, background subtraction, object tracking, 
and distance or height calculation. This protocol subsequently is used in a basic case study to analyze 
the limits of this instrument for bird monitoring applications.  

The overall aim is to assess the quality of bird or “object” detection by a webcam. More 
specifically:  

- The first objective deals with webcam detection capability, where the detection limits for object 
velocity, contrast and size are analyzed in relation to the visibility of a bird on a webcam video. 
This is studied by means of an indoor experimental set-up recording artificial objects,  
i.e., pearls, attached to a pendulum to mimic flying objects.  

- The second objective addresses the webcam tracking capability, where sources of error and their 
ranges are discussed. Therefore, a simple 3D-model was built linked to processing tools that 
allocate the correct coordinates to the correct objects.  

In summary, an experiment was set up to analyze and process webcam recordings for retrieving 
information about the flight altitude, direction and velocity of migratory birds. 

In the section on Experimental Design, the materials and methods necessary to study the webcam 
detection capability and the tracking capability are presented. In the section on Results and Discussion 
the effects of inaccurate position of the cameras, incorrect determination of pixel coordinates of objects 
and lens distortion are also examined. In the section on Application of the Webcams, we demonstrate 
the use of webcams in an outdoor experiment. Finally, in the last section, conclusions and 
recommendations are formulated.  

2. Experimental Design 

2.1. Materials 

The measuring set up consists of a pendulum experiment, combinations of webcams positioned in a 
stereo pair and connected to software.  

Webcams: Logitech Quickcam Express and a Creative Live! Cam Vista IM connected to an 
enhanced Acer Travelmate 4602 were used for the experimental design. They have a standard 
resolution of 352 x 288 without interpolation and 640 x 480 with interpolation. The horizontal field of 
view (HFOV) is approximately 40° and 50°, respectively.  

Stereo image recording requires two webcams, preferentially placed on the same baseline and 
height, and looking in the same direction. Alternative set-ups would unnecessarily complicate the 
calculation procedure. The camera's viewing direction was oriented north to avoid direct sunlight 
impact on the camera which may result in an over-exposure of the video. Video recordings cannot start 
perfectly at the same time, so a common marking point must be integrated to ensure synchronous video 
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recordings. This was done, using a sparkling light or a clear visible and distinguishable action in the 
field of view of both webcams [27]. Figure 1 shows the stereo recording set up as used outdoors.  

Software. Matlab 7.5.0 [33] was used to acquire videos in the experimental design and to process 
and analyze the video material. Stereo video acquisitions were done by PY Software's Active Webcam 
version 10.1, a surveillance program to perform simultaneous recording and broadcasting from 
unlimited number of cameras. 

Figure 1. Illustration of the positioning of the webcams for stereo recordings. Left, two 
Creative webcams. Right, a detail on a Creative webcam mounted on a plate.  

 

A pendulum experiment was conducted to record the visual detection of velocities, contrasts and 
sizes of objects observed by the webcam. The experiment consists of the Logitech webcam, a Projecta 
CinemaLite 16:9 projection screen and a pendulum. The pendulum was built up of white Nm 30/3 yarn 
with a fixed upper end and a leaden weight of 15 g at the bottom end for initiating the movement. 
About half way the yarn, different sizes and colors of wooden pearls were fixed, one pearl per 
experiment. Six different diameters of pearls used are indicated in Figure 2.  

Figure 2. Left: Recording set-up of the pendulum in front of the projection screen and the 
Logitech webcam. Right: Various sizes (diameter in cm given in white) and colors of 
pearls used to analyze the effect of size, speed and contrast on the detection capabilities of 
a simple webcam. 

 

 1.60; 0.95; 0.80; 0.65; 0.60 cm 
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The initial color of the pearls is black and to obtain three levels of gray they were painted with 
mixed poster paint. The distance between the pearl and the camera was fixed to 1.40 m to ensure that 
the full screen fits in the image. The screen was placed 0.20 m behind the pendulum and perpendicular 
to the camera's viewing direction. The length of the pearl pendulum was 0.94 m and the lead was fixed 
at 1.98 m. A vertical bar, that can be moved horizontal and parallel to the projection screen, 
determined the starting point and thereby the velocity of the pendulum. The projection screen has a 
white projection surface, whereas the pearls are black to grayish white. To avoid shadows on the 
projection screen 1,320 Watts of surrounding lights were used. The projectable area of the screen is 88 
cm by 146 cm. Recordings were made with a resolution of 352 by 288 pixels at 30 frames per second 
(fps). Figure 2 illustrates the set-up.  

The velocity of the objects was determined as the velocity at the lowest point of pendulum by 
applying the law of conservation of energy. In the ideal case, the potential energy will be fully 
converted into kinetic energy (no friction). Five different sizes of pearls were used with four different 
colors, ranging from black to light grey, and released at six different deviation points (corresponding 
velocities V1 to V6 are 4.91, 6.02, 6.95, 7.77, 8.51, 9.19 km h–1, respectively), resulting in 120 
possibilities. These amounts were manageable in the given time frame. Each configuration was 
acquired five times to rule out possible mistakes. For each object or pearl at 1.40 m distance of the 
camera a corresponding size on the image can be computed and the real velocity of the pendulum can 
be converted to image pixel speed. The recordings were analyzed visually to check whether an object 
could be detected by the webcam in the lowest point on the first sway to know at which velocity, 
contrast and sizes objects are still traceable.  

2.2. Measuring and Processing Protocols 

Prior to analyzing the tracking capabilities of a webcam, the recording must be processed. A 
schematic overview of the processing steps is given below (Figure 3).  

Figure 3. Involved process to calculate distance & height of moving objects. 

 

Background Subtraction 

Lens distortion correction 

Coordinates calculation 

Sorting objects 
 

Distance or height 
calculation 

Right video Left video 

Matching objects 
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Lens distortion. Regular webcams are made for close range recording and for monitoring objects or 
persons mainly in the centre of the image. Webcams are fitted with a plastic low cost lens suffering 
from an inherent inaccurate representation of the reality, the so called lens distortion [34]. Hence, prior 
to deriving metrics from recordings, a lens distortion correction must be performed. Warping 
equations, transformation of pixels in the input space according to a polynomial equation that is fitted 
to an amount of control points, can be used to correct the retrieved webcam image. This mathematical 
relationship is determined by the location of pixels in the image and their corresponding real known 
coordinates [e.g., 35]. Although more advanced warping techniques are available, a second degree 
warping was applied in this exploratory study for the sake of simplicity. Correcting lens distortions of 
a webcam requires a reference panel with known and fixed geometry. A checkerboard is the tool of 
excellence for correcting these distortions [36,37]. This board was placed in front of the webcam at a 
known distance perpendicular to the sensor plain. The coordinates of the grid corners, where black and 
white squares converge, were measured. The pixel size of one square was known thus the actual 
coordinates of grid corners could be calculated. Both coordinates were put together in a system and 
solved using singular value decomposition in Matlab. Six is the minimal number of control points 
required for a second-order warp. Generally, at least the double amount of control point is used. In this 
research 20 points are used. Figure 4 illustrates the lens distortion, the warping correction and lists the 
calculated parameters for the polynomial equation. The root mean square error (RMSE) is 1.33 pixels 
for the x-coordinates and 2.58 pixels for the y-coordinates. 

Figure 4. Warping results with the values of the warping equation's parameters. Red dots 
are the correct position and green stars are the calculated.  

 

 

α0 -6.84E+00 β0 -5.00E+00 

α1 1.05E+00 β1 -5.44E-04 

α2 -1.33E-02 β2 1.03E+00 

α3 -3.48E-05 β3 -3.87E-06 

α4 -9.54E-06 β4 1.18E-04 

α5 9.47E-05 β5 9.47E-05 
 

 
Background subtraction. Once stereo videos are made, the coordinates of objects need to be 

extracted from each frame wherein motion occurs. Therefore, the dynamic foreground and the static 
backgrounds need to be separated. The simplest form of background subtraction is called the frame 
difference method which subtracts the current frame from the previous one [38]. A pixel is considered 
as foreground when the difference in pixels values for that given pixel is larger than a certain 
empirically determined threshold.  
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An issue with motion detection is that objects need to be continuously moving. In frames where 
objects stay still for more than a frame period (1/fps), no motion will be detected and the 
corresponding pixels will become part of the background [31,38]. Another background subtraction 
method makes use of a median filter. The background is determined by the median of the previous N 
frames. In turn, the foreground of the current frame is the difference between the current frame and the 
background. Hence, both fast and slow moving objects can be detected just as long as they move a few 
pixels in a given time frame. This is an advantage compared with the frame difference method. The 
median filter was used as a jumping window i.e., it was held constant for a number of succeeding 
frames to reduce memory usage [31]. A median filter is less influenced by outliers than a mean filter. 
Since this is an exploring study, more advanced filters have not been tested. The background detection 
algorithm applied in this study is a median filter to search for moving foreground objects. Objects are 
extracted from the background by an arbitrarily determined threshold. Figure 5 shows three different 
threshold values: 0.050, 0.020 and 0.015 (gray values scaled between 0 and 1). Since the frames of the 
recordings are converted to grayscale by summing the RGB-values, the threshold values needs to be 
multiplied by 256*3. With an inaccurate threshold value, more noise removal has to be applied. As 
shown in Figure 5, the ‘detected’ object has a slightly different shape than the real object. Two major 
reasons for this anomaly can be identified. First, fast moving objects are often captured as if there are 
two objects or one elongated object due to the deformation as illustrated in Figure 5D. Each of the two 
balls is deformed in such a way suggesting that each ball is composed of two objects or one elongated 
object. Thus, a fast moving ball is captured on the webcam as one large elongated ball which clearly is 
an artifact.  

Figure 5. Five images taken with the Creative webcam (resolution 320 × 240) of moving 
balls on a floor. Images (A), (B) and (C) illustrate a background subtraction with threshold 
values of 0.050, 0.020 and 0.015, respectively which causes noise. The large white objects 
are the moving target objects. Noisy pixels are not retained by the threshold and appear as 
white flecks. Without the noise removal these pixels are falsely classified as moving 
objects. (D) Deformed object. (E) Overlay of 2 succeeding images.  

 
(A)                                     (B)                                    (C) 

 
(D)                                        (E) 
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A second reason is the appearance of “ghosts” [30,31]. The median filter remembers the old 
location of the object and produces a 'ghost' object behind the target object. Fast-adapting median 
filters, which has lower buffer sampling rate, are less susceptible for this problem than slow-adapting 
filter. Background subtraction results in a binary image, i.e., changed pixels and non-changed pixels. 
In order to remove noise and to stress and merge objects which are placed close to each other erosion 
and dilution Matlab functions were used (Figure 6). Noisy pixels are not restrained by the threshold 
and appear as flecks [33]. 

Coordinates are determined by the clumping indexing algorithm in Matlab [33]. This function 
labels connected components in binary images and returns them in a matrix together with the number 
of components. The elements of the returned matrix are integer values larger than or equal to zero. The 
pixels labeled 0 are the background. The pixels labeled 1 make up one object. The pixels labeled 2 
make up a second object, and so on. Out of the matrix, the position of the center of the objects can be 
derived and used for further processing. 

Figure 6. Left, the application of the Matlab dilution algorithm; Middle, normal; Right the 
application of the erosion algorithm. 

 

Sorting objects. The temporal analysis of an object requires that its changing coordinates can be 
estimated. When multiple objects in a frame occur, however, it is necessary to assign the right 
coordinates to the right objects. An image is represented as a matrix where the row number indicates 
the frame number and the columns contain the coordinates for n detected objects. Assume that in a 
certain frame (time ti) two objects are visible with these coordinates: 

       (1) 

 

The predicted position of this object in the following frame (time ti+1), assuming linear motion, is: 

       (2) 

   

with p for projected position and v for speed and t for time. 
In the next frame the predicted position of the n objects is compared to positions of m (objects need 

to be detected since it is not necessarily the same amount) in that frame in a n × m matrix. Assuming 
that there are three objects, the object the closest to O1p will be selected using Euclidean distances. If 
this distance is smaller than a certain threshold distance, the related object is the continuation of the 
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first object. If not, a new object is entering the pathway list. The same is done for the remaining objects 
of the current frame. Next new projected positions are calculated with knowing speed of the  
objects e.g.: 

     (3) 

This strategy continues until all coordinates in each frame are assigned to a specific object. The 
threshold distance is a combination of a constant and a fraction of the speed of the object e.g.,  
3 + ½ O1v and stipulated by trial and error. 

Coordinates of objects were determined by a row-by-row search of components using the label 
algorithm of Matlab [39]. Therefore, a sorting process was needed to assign the right coordinates to the 
right objects. Figure 7A shows the effect of the sorting algorithm of unsorted object lists in a graph, 
whereas in Figure 7B, the objects are aligned and separated from each other (no connection lines 
between the object exist). Threshold value determination depends on the frame rate of the recording 
and the speed of the objects. Objects that are not detected anymore for one or more frames are deleted 
and will be considered as a new object by the sorting algorithm when it appears again. To deal with 
this issue, the last known object coordinates is copied for a few amount of frames. Consequently, the 
object shows up again and the original pathway continues. As such, it is possible to calculate distances 
which are crucial in the sorting algorithm. 

Figure 7. The effect of the sorting algorithm, (A) unsorted object tracings and (B) sorted 
object tracing. Objects in (B) are aligned and separated from each other, whereas in (A) 
connections between objects exist.  

(A)                                                                 (B) 

 

Distance calculation. The calculation of the distance or height of moving objects requires a 
modeling approach. Our method assumes a pinhole camera to apply triangulate geometry [34]. With 
the image plain and sensor plain parallel the following equations applies (Figure 8):  

      (4) 
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      (5) 

where β is half the field of view and α the angle between the object and the perpendicular line on the 
image plain starting from de camera lens. ∆x is the difference between the middle and the projection in 
x-direction. These equations can be applied in both the horizontal and vertical plane. 

Figure 8. Left: Model and detail of camera (Left); Right: stereo vision. 

 
 

In 3D, an object is located on the intersection of two lines in space, one for each camera of the 
stereo vision pair (Figure 8). Equations (6) to (9) show the definition of such a line counting for one 
camera. This is resulting in a system of four equations and three unknown variables x, y and z: 

     (6) 

     (7) 

     (8) 

     (9) 

where xc1, yc1, zc1 and xc2, yc2, zc2 are known coordinates of camera 1 and 2, respectively, and a1, a2, b1, 
b2 are respectively the slopes in the two perpendicular plains.  

This system of equations can be solved using singular value decomposition. Before implementing 
the coordinates in the system, the lens distortion correction was applied. The z-coordinates give the 
distance to the object in a plane along the viewing direction. If the height is required or the webcams 
are placed under a certain angle, corrections for this approach have to be made. 

2.3. Sources of Errors 

Different sources of errors due to model structure, algorithm boundary conditions and observation 
qualities exist. In this study, the effect of the inaccurate positions of the cameras (camera shift and 
rotation due to the fragile camera heads), incorrect determination of pixel coordinates of objects and 
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lens distortions were examined. In the stereo vision, multiple possible sources of errors are observed: 
position shifts, webcam rotations and the incorrect determination of pixel coordinates of objects e.g., 
not the real center of an object in determined. 

Camera shift and rotation. The effect of inaccurate positioning of the cameras was tested by means 
of a position shift of 1 and 5 cm along the baseline and a rotation of one webcam from 0 to 5 degrees 
for various baseline lengths. The statistical analyses were performed in R (version 2.8.1). The  
Mann-Whitney U non-parametric test was used to test the difference in error of distance for a baseline 
length of 1 and 2 m. The effect of inaccurate placing of one webcam decreases when the distance 
between the cameras increases (p < 0.01). The further the cameras are placed from each other, the 
more precise the distance calculation is. 

Pixel determination. Another possible error originates from an incorrect determination of pixel 
coordinates of objects, e.g., when the real center of an object is not determined. Therefore, pixel 
deviations of 0.5 and 1 pixel in x and y direction are assumed to quantify the effect of incorrect pixel 
locations. This will create a raster of 9 points, leading to 81 combinations to investigate. Four distances 
between the cameras were used to assess the deviations: 2, 4, 6 and 20 m. The simulated object was 
located at 40 m.  

3. Results and Discussion 

3.1. The Webcam Detection Capability 

Results of the pendulum experiments are summarized in Figure 9, which shows at what size an 
object is still detectable. Larger objects remain visible at larger velocities than smaller objects. Darker 
objects are visible longer than lighter objects. Table 1 shows the maximal contrast or intensity 
difference, an average of five repetitions, in the frame where the pendulum is at its lowest point (i.e., at 
maximum velocity). Contrast values decrease when the color becomes paler (from black to white). In 
addition, size 5 (1.60 cm) of the balls shows larger contrast compared to the other sizes. 

Figure 9. The minimal detectable object size (0.60, 0.65, 0.80, 0.95, 1.60 cm) with a 
webcam recording at a given object speed (increasing from V1 to V6, or 4.91, 6.02, 6.95, 
7.77, 8.51, 9.19 km h–1, respectively) and color (black, grayish black, gray, light gray). 
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Table 1. The maximum contrast or intensity difference (gray scales 0–255) in the frame 
where the pendulum is at maximum speed for each size S (1.60, 0.95, 0.80, 0.65, 0.60 cm), 
velocity V (4.91, 6.02, 6.95, 7.77, 8.51, 9.19 km h–1, respectively) and color (black, grayish 
black, gray, light gray). 

 Size S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 
Velocity Black        Grayish black   
V1 78 78 79 77 110  78 77 77 77 106 
V2 77 78 78 77 94  78 77 78 77 82 
V3 77 77 77 78 86  78 77 78 78 80 
V4 77 78 77 78 81  78 77 78 78 79 
V5 77 79 78 78 78  78 77 77 79 78 
V6 79 79 80 79 77  80 80 79 80 78 
 Gray     Light gray   
V1 77 77 77 77 91  77 76 77 76 93 
V2 78 77 77 77 82  78 77 76 77 76 
V3 77 77 77 78 78  78 77 77 77 76 
V4 77 78 78 78 77  77 77 77 77 77 
V5 78 77 76 77 78  77 76 78 77 77 
V6 79 77 81 79 79   77 76 78 76 77 

 
The importance of the effect of velocity, size and contrast on the detection capability of objects in 

video recording is reported by several studies dealing with object tracking and motion detection. 
Intensity or contrast is a common used threshold determinant in background modeling [31,32]. 
Reference [40] developed a vehicle tracking algorithm based on the combination of a per pixel 
background model (an extension of work by [41]) and a set of single hypothesis foreground models 
based on object size, position, velocity, and color distribution. Instead of using grayscale video, [31] 
argued that color image, either red-green-blue (RGB) or hue-saturation-value (HSV) color space, is 
becoming more popular in the background subtraction models. In addition, [30] and [42] state that 
color is better than intensity or luminance at identifying objects in low-contrast areas. 

3.2. The Webcam Position 

Figure 10 illustrates the relationship between the distance and the calculation error due to a position 
shift. The fluctuations of the curves in Figure 10 are likely due to the discretization process. Similar 
results were found by [43-45]. Reference [43] developed a 'multiple baseline stereo method' which 
combines the advantages of a large and a small baseline length. The advantages are a high depth 
accuracy and faster image overlapping procedure, respectively. For similar reasons, [44] developed a 
multi viewpoint linking' method. A variable baseline stereo tracking vision system was designed  
by [45]. The system uses a high-speed linear slider to adapt the distance between cameras to improve 
the accuracy of 3D estimation, especially when dealing with fast moving objects.  

The effect of a horizontally rotated webcam, which results in the wrong determination of 
coordinates, decreases when the distance between the webcams or baseline length increases  
(Figure 10C). A horizontal rotation of 1 degree results in an error of the distance of about 27% for 
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inter-camera distance of 2 m, whereas a 5 degree rotation results in an error of 68% with a baseline 
length of 4 m. Comparison of the 2 m baseline length for both rotations was not possible since there 
was no overlap with the 5 degree rotation. The object was placed on 40 m in this error assessment. In 
conclusion, the larger the distance between the cameras, the smaller the distance error, but also the 
smaller the stereo overlap.  

Figure 10. (A) Relationship between the distance and the calculation error on the distance 
due to a position shift (1 cm) of one camera for baseline length D of 1 and 2 m. (B) 
Relationship between baseline length D and the calculation error of the distance due to a 
position shift of 1 and 5 cm of one camera for an object placed on 20 m. (C) Relationship 
between baseline length D and the calculation error of the distance of the object located on 
40 m with a rotation error of 1 and 5 degrees. A linear relation is observed with the inverse 
distance D.  

(A) 

 

(B) 
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Figure 10. Cont.  

(C) 

 

A close to normal distribution is observed in the histograms of the standard deviation of the 
calculated object distance (Figure 11). The standard deviation decreases when the baseline length 
increases (Figure 11). Similar results were found by [43,44]. 
 

Figure 11. Relationship between baseline length D and the standard deviation of the 
calculated distance for pixel deviations of 0.5 and 1 pixel. The standard deviation decreases 
with increasing distance D and is larger for a larger pixel deviation.  

 

Since lens distortion is present in all the webcams’ image recordings, a correction was necessary. A 
checkerboard was positioned perpendicular to the sensor plain at known distance. The control points 
used to determine the warping equations are given in Section 2.2. 
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If no correction for lens distortion is applied, objects, especially those at the edge of the image, are 
placed inwards on the image creating incorrect pixels and inaccurate distance calculation (see also 
section 3.2.6.). A study of plumb-line calibration in reference [46] showed an RMSE between 1  
and 1.7 pixels depending on the quantity of used lines. The larger the number of straight lines 
measured, the smaller RMSE values were found. Reference [47] obtained an average error of less  
than 0.3 pixels in an image with a resolution of 1,024 × 768 pixels with a calibration algorithm based 
on Taylor series expansion. Several more advanced digital calibration methods were compared by [48].  

3.3. The Webcam Tracking Capability: a 3D Model for Tracking Moving Objects 

Two ideal pinhole cameras (Figure 12), looking at an object with known coordinates, were 
simulated using the POV-ray program (Persistence Of Vision ray tracer program) [49]. With this 
program, images are captured as if the camera is looking to real objects. The simulations demonstrate a 
maximal model error in z-direction (height) of 1.37%, an average of 0.26% and a standard deviation  
of 0.27%. The error increases when the object is placed in the middle between the cameras.  

Higher error values in z-direction, are likely due to the discretization of the data in raster images, 
i.e., the conversion of continuous variables to discrete ones. For instance, when the object is positioned 
on a location with real coordinates, it will be converted into a discrete value (for example  
(2.3949, 8.8434) into (2,9)). A Monte-Carlo analysis [50,51] probably will improve the model's 
uncertainty assessment in future work. The error on z coordinate does not change considerably with 
increasing distance of D. Since images of both cameras do not overlap at close distances, simulations 
were started at particular object distances shown in as Figure 12. The point where the two fields of 
view converge depends on the inter-camera distance and the HFOV. 

Figure 12. Left: Illustration of stereo vision and overlapping point with D the baseline 
length, R the distance to the overlapping point of both camera views having an angle 
HFOV. Right: Distance R to the point where overlap occurs with stereo vision for cameras 
with HFOV of 40 (R40) and 50 degrees (R50) for specific D values. 

 

D (m) R40 (m) R50 (m) 
0.1 0.14 0.11 
0.5 0.69 0.54 
1.0 1.37 1.07 
5.0 6.87 5.36 

10.0 13.74 10.72 
 

4. Application of the Webcams 

Since the proposed processing algorithm (see Figure 3) was developed with emphasis for bird 
migration monitoring application as introduced in the first section, some considerations on bird flight 
characteristics are required. The knowledge of features such as flight altitude and velocity, and the size 
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of individual species is important, especially on Anatidae (ducks, geese and swans) and 
Charadriiformes (waders and gulls) which are the natural host of the avian influenza virus [12].  
Table 2 summarizes the length and wingspread of some of the most important hosts of the avian 
influenza virus. 

Table 2. Length L and wingspread S [49] of some of the most important hosts of avian 
influenza according to FAO [12]. 

Scientific name English name L (cm) S (cm) 
Anas penelope Wigeon 48 80 
Anser indicus Bar-headed goose 75 150 
Cygnus olor Mute swan 150 220 
Numenius arquata Eurasian curlew 54 - 
Tringa totanus Common redshank 26 - 
Charadrius dubius Little ringed plover 16 - 
Larus occidentalis Western gull 60 - 
Ardea cinerea Grey heron 95 185 

 
The applicability of webcam monitoring is demonstrated with an example. Flight altitudes of most 

common migratory birds over land show a large variation but are typically below 1,500 m [53].  
Table 3 gives the number of pixels that represent a meter at various distances R for common 

resolutions. The values differ a factor 3.2 between the lowest (320x240) and the largest (1,024 × 768) 
considered webcam resolution. Suppose a Bar-headed goose (L = 75 cm, S = 150 cm from Table 2) 
flying perpendicular over a webcam at 500 m height, then the bird will occupy approximately 1.035  
by 0.293 pixels (0.69 pixels × 1.50 m and 0.39 pixels × 0.75 m) and 3.3 by 0.93 pixels in case of a 
resolution of 320 × 240 and 1,024 × 768, respectively, according to Table 3 and under the assumption 
that the bird is flying along shortest axis of the image. The maximum flying height of birds (for 
instance bird species as mentioned in Table 2), which can be detected by a webcam, depends on many 
factors. Key variables are bird size and distance and the spatial resolution of the sensor.  

Table 3. Number of pixels that represent a meter at various distances R for common 
resolutions: 320 × 240, 640 × 480, 800 × 600 and 1,024 × 768 pixels. The horizontal and 
vertical length in meters covered by the recording or image at a distance R is given by 
width and height, respectively. 

R 
(m) 

Width 
(m) 

Number of pixels per meter 
Horizontal pixels 

320 640 800 1024 
1 0.93 343.12 686.24 857.80 1097.99 
10 9.33 34.31 68.62 85.78 109.80 
50 46.63 6.86 13.72 17.16 21.96 

100 93.26 3.43 6.86 8.58 10.98 
200 186.52 1.72 3.43 4.29 5.49 
500 466.31 0.69 1.37 1.72 2.20 
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Table 3. Cont. 

R height Vertical pixels 
(m) (m) 240 480 600 768 
1 1.24 193.01 386.01 482.51 617.62 
10 12.43 19.30 38.60 48.25 61.76 
50 62.17 3.86 7.72 9.65 12.35 

100 124.35 1.93 3.86 4.83 6.18 
200 248.70 0.97 1.93 2.41 3.09 
500 621.74 0.39 0.77 0.97 1.24 

 
Besides the flight characteristics of birds, the color of the plumage is also an important feature since 

the contrast between plumage and background will considerably determine the detection capacity of 
the webcam recording. More about the importance of contrasts can be found in [31,32,40] for intensity 
and RGB color space in [30,42].  

Apart from the difference in contrast between birds and sky (or any other background), also the 
light intensity and the sensor signal-to-noise-ratio play an important role for bird detection purposes. 
Moreover, also the application that is aimed at is a factor that should not be ignored. Counting birds 
differs significantly from bird identification or from tracking individuals or groups of birds. Some 
group of birds may have characteristic flying configurations, which are relatively easy to recognize. In 
case that the minimum size of a bird can be assumed as the determining factor to detect birds, birds 
with lengths that correspond with one pixel might be detected (although sub-pixel objects can be 
detected if the contrast between object and background is high enough). Thus, combining this 
assumption with the numbers from Table 2 and Table 3 for a webcam with a resolution of 320 × 240 
pixels, the maximum height of the birds should not exceed 30, 50, 92, 104, 115, 144, 183, 289 m for 
respectively the Little ringed plover, Common redshank, Wigeon, Eurasian curlew, Western gull,  
Bar-headed goose, Grey heron, and Mute swan (Table 2). These numbers are obtained by multiplying 
the amount of pixels of Table 3 (vertical resolution) with the bird length and then recomputed to one 
pixel. For the Bar-headed goose example the calculations are: 0.75 m × 193.01 pixels = 144.75 m for  
R = 1 m. Since the distance and the amount of pixels is inverse proportional, the values for R = 1 are 
the corresponding values for the height of birds. In case webcams with better resolution are used (for 
instance with 1,024 × 768 pixels or even higher), a dramatic increase of the maximum height for the 
detection of the before-mentioned birds can be obtained, respectively 98, 160, 296, 333, 370, 463, 586, 
and 926 m. These numbers might suggest that webcams can be useful for detection or tracking of bird 
species flying at these altitudes. Hence, close range birds are the main target group for the use of 
webcam technology. However, since this technology evolves quickly and to date, already webcams of 
two megapixels are available, far range bird detection might become feasible in the nearby future. 

Analyzing outdoor webcam recordings of a flock of pigeons flying at low altitude nearby a pigeon 
house revealed some new issues. Due to fast bird flapping, in some frames the wings are detected as 
two separated objects causing additional difficulties for the proposed sorting algorithm (Figure 13A-F). 
Decreasing the threshold in the background subtraction phase can reduce this issue, but makes it more 
sensitive to noise. This anomaly only occurs in case of close-range recordings when more details of a 
bird are captured (no longer considerable as a point or circle). 



Sensors 2010, 10              
 

 

3497 

Figure 13. Processing example of two succeeding frames of a webcam recording a flying 
pigeon. (A) and (D) show the full color image; (B) and (E) the outcome of the median 
filter, and (C) and (F) after processing to reduce noise and to connect foreground pixels to 
a number of adjacent foreground pixels. Due to wing flap, two objects emerge.  

 
(A)                                             (B)                                             (C) 

 
(D)                                               (E)                                             (F) 

Manual stereo matching delivered following results: the flight altitude of the bird shown in  
Figure 14 is between 5.5 and 6.7 m calculated for 5 stereo matching pairs. In similar recordings the 
birds were estimated to fly on 4.5 m height (Figure 14). In both cases the webcams were lined up  
at 1.205 m height with the baseline length of 1.560 m as illustrated in Figure 1. 

Figure 14. Two stereo pairs of airborne pigeons. Model application revealed that the birds 
were flying at approximately 6 m ((A) & (B)) and 4.5 m ((C) & (D)) altitude, respectively. 

 
(A)                         (B) 
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Figure 14. Cont. 

 
(C)                            (D) 

5. Conclusions and Recommendations 

An exploratory and demonstrative study was performed to assess the potential use of webcams for 
monitoring bird migration posing two research questions: (i) what is the detection capability of moving 
objects in webcam recordings; (ii) and how can birds be tracked and followed in these recordings? 

Webcams are low-cost cameras with the ability for remotely-control and unsupervised operation 
that in addition can be adapted to be robust to weather conditions. As such, they have potential as first 
analysis tool for bird migration. With this demonstration study, we aim to stimulate and incite readers 
on the potential use of webcams for a variety of applications. It is a call for the standard 
implementation of low cost and unsupervised operational tracking technology. In order to demonstrate 
this, an experimental design was set up to study the detection capability using objects of different size, 
color and velocity recorded indoor on a white screen. The results of this experimental set-up indicate 
the minimum size, maximum velocity and required contrast of the objects. In order to track and follow 
moving objects with different velocities, a processing scheme was introduced. A background 
subtraction model separates the moving foreground objects from the static background. To ensure that 
the right coordinates are matched with the right target objects, a sorting algorithm was developed. 
Since webcams have low cost plastic lenses with an inherent inaccurate representation of the reality, a 
correction for lens distortion was performed by a second degree warping. Stereo vision was 
implemented to create depth vision and to calculate the distance between the object and the cameras in 
order to determine flight altitude, direction and speed.  

Further research should focus on potential alternatives of the current modular processing. Each 
individual processing step works independent of the modular approach and next step and thus can be 
replaced by one that has better accuracy or precision. In the future, it is likely that webcams with 
higher resolutions will become available at lower prices. As such, this would increase details in 
webcam recordings and optimizing detection capabilities. Literature described various background 
models and motion detection methods that are worthwhile to be investigated further for their 
possibilities and potentials. The development of webcams, specially adapted to work in stereo vision, 
could ease the adjustments and make recordings more precise. In addition, further thinking about the 
following issues aiming at long term goals is needed: 
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• Establishing a complete set-up of webcams in the field in order to collect temporal and spatially 
distributed data. In such detailed studies the practical advantages, disadvantage, limitations and related 
technical issues of webcams can be revealed;  

• Constructing and participating in a network of multiple cameras to cover larger areas (line up, 
raster); these webcams can be integrated in existing measuring networks of for instance biophysical 
parameters of vegetation [54,55]; 

• Communication between cameras and a central data collection station (wireless); 
• Real-time processing; 
• Preferential hotspots to locate the networks (migratory pathways); 
• Participation of volunteers (internet); 
• Feedback to participants (internet); 
Within an extended network, webcams might be an important instrument against the distribution of 

avian influenza since it can be used to detect and track birds with a spatial and temporal resolution 
depending on the network density and webcam design. As such, spots with increasing amount of birds 
which potentially may be carrier of the avian influenza virus can be located in a dynamic way. With 
the current easy available webcams, however, the identification of bird species remains an issue. Better 
knowledge of flyways and staging areas of birds can for instance contribute in assisting policy makers 
for taking timely and promptly measures in order to prevent or slow down the transfer of avian 
influenza to domestic birds. In turn, this may help in reducing the risk of virus transfer to humans.  

Besides monitoring bird migration, the processing scheme can also be used in other topics such as 
bird migration changes linked to global warming. With the current easy available webcams, however, 
the identification of bird species remains an issue. From this demonstration study, considering the 
quantitative examples of section 4, it can be concluded that the major utility of webcams is not 
necessarily large-scale migration patterns, but rather to monitor the movement of birds at lower flying 
altitude in specific areas such as airports, wind farms and at specific staging areas where birds shelter, 
forage and/or mate. However, since webcam technology evolves quickly and to date, already webcams 
of two megapixels are available, far range bird detection might also become feasible in the nearby 
future. Subject to small adaptations, webcams can also be useful in other small scale ecological 
surveys where the detection and tracking of moving objects is targeted, for instance the capturing of 
the behavior of wild and domesticated animals (i.e., monitoring and guarding sick or pregnant animals 
in stables).  
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