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Time series of remote sensing imagery or derived vegetation indices and biophysical products have been
shown particularly useful to characterize land ecosystem dynamics. Various methods have been developed
based on temporal trajectory analysis to characterize, classify and detect changes in ecosystem dynamics.
Although time series similarity measures play an important role in these methods, a quantitative comparison
of the similarity measures is lacking. The objective of this study was to provide an overview and quantitative
comparison of the similarity measures in function of varying time series and ecosystem characteristics, such
as amplitude, timing and noise effects. For this purpose, the performance was evaluated for the commonly
used similarity measures (D), ranging from Manhattan (Dpy,), Euclidean (Dg) and Mahalanobis (Dpan)
distance measures, to correlation (Dcc), Principal Component Analysis (PCA; Dpca) and Fourier based (Dgrr.De,
Dr) similarities. The quantitative comparison consists of a series of Monte-Carlo simulations based on subsets
of global MODIS Normalized Difference Vegetation index (NDVI) and Enhanced Vegetation Index (EVI) and
Leaf Area Index (LAI) data. Results of the simulations reveal four main groups of time series similarity
measures with different sensitivities: (i) Dysan, D, Dpca, D quantify the difference in time series values, (ii)
Dan accounts for temporal correlation and non-stationarity of variance, (iii) Dcc measures the temporal
correlation, and (iv) the Fourier based Dgrr and D¢ show their specific sensitivity based on the selected Fourier
components. The difference measures show relatively the highest sensitivity to amplitude effects, whereas
the correlation based measures are highly sensitive to variations in timing and noise. The Fourier based
measures, finally, depend highly on the signal to noise ratio and the balance between amplitude and phase
dominance. The heterogeneity in sensitivity of each D stresses the importance of (i) understanding the time
series characteristics before applying any classification of change detection approach and (ii) defining the
variability one wants to identify/account for. This requires an understanding of the ecosystem dynamics and
time series characteristics related to the baseline, amplitude, timing, noise and variability of the ecosystem
time series. This is also illustrated in the quantitative comparison, where the different sensitivities of D for the
NDVI, EVI, and LAI data relate specifically to the temporal characteristics of each data set. Additionally, the
effect of noise and intra- and interclass variability is demonstrated in a case study based on land cover
classification.
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1. Introduction capturing bio- and geophysical processes and change events,
including natural and anthropogenic disturbances (Jin & Sader,

Assessing and monitoring the state of ecosystems are key 2005; Linderman et al., 2005; Zhang, Friedl & Schaaf, 2006). As part

requirements for global change research (Fischlin et al., 2007),
biodiversity conservation and ecosystem management (Coops et al.,
2009; Turner et al., 2007). Satellite remote sensing has long been used
as a tool to assess land ecosystem dynamics as they provide consistent
measurements at a spatio-temporal scale which is appropriate for
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of this process, several vegetation indices (VI; Bayarjargal et al., 2006;
Seiler et al., 2007; Verbesselt et al., 2009; Xiao et al., 2006) and
products related to biophysical parameters such as leaf area index
(LAIL; Gao et al., 2008; Jiang et al., 2010) or primary productivity
(Ricotta et al., 1999; Running et al., 2004; Verstraeten et al., 2010;
Zhao et al., 2005) were used to study essential vegetation parameters
over time. At the same moment, a variety of methods has been
developed for classifying and detecting temporal changes in land
surface properties (Coppin et al., 2004; Lu, Mausel, et al., 2003; Lu &
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Weng, 2007; Mas, 1999; Singh, 1989). The application of these
methods range from a point timescale (e.g., post-classification
analysis of single date images and interpretation of the results over
time) to a bi-temporal (e.g., bi-temporal change detection) and
continuous timescale (e.g., classification and change detection based
on temporal trajectory analysis).

Temporal trajectory analysis at a continuous timescale has been
shown particularly useful to characterize land ecosystem dynamics,
since it effectively exploits the multi-temporal sequence of images to
reveal temporal patterns over several time scales (Bruzzone et al.,
2003). On the intra-annual time scale, vegetative ecosystems typically
show a seasonal temporal trajectory driven by plant phenologies
affected by rainfall or temperature (Heumann et al., 2007; Zhang et al.,
2003; Zhang et al., 2006) where different vegetation communities and
plant species tend to respond differently (Hermance et al., 2007).
Between years, these phenological cycles (e.g., onset and end of
greenness, length of growing season) may alter which can be
associated with seasonal changes (e.g., intra-annual changes related
to plant phenology; Verbesselt et al., 2010a), gradual changes (e.g.,
inter-annual changes due to climate variability; Jacquin et al., 2010;
Myneni et al., 1997; Tottrup & Rasmussen, 2004) and abrupt changes
(e.g., natural or anthropogenic disturbances; de Beurs & Henebry,
2005; Verbesselt et al., 2009). Accordingly, the temporal trajectory has
been utilized to characterize ecosystem dynamics and its changes
have been used to identify, or discriminate among, land cover types
and monitor land cover responses to inter-annual variability, climate,
land use and disturbances (Bradley & Mustard, 2008; Hermance et al.,
2007; Myneni et al., 1997; Zhou et al., 2001).

Time series similarity plays an important role in these methods for
temporal trajectory analysis. First, time series similarity has been used
as an absolute criterion to derive statistical inferences about the
relationship between time series of different data sets (Bretherton
et al., 1992; Tippett et al., 2008). In this context, a variety of methods
have been applied in remote sensing studies to resolve the association
between time series of remote sensing data, on one hand, and bio- and
geophysical variables, on the other hand. These methods range from
singular vector decomposition (SVD; Gong & Ho, 2003; Gong & Shi,
2004; Xiang & Liu, 2002) and canonical correlation analysis (CCA;
Buermann et al., 2003; Castro et al., 2009; Lotsch et al., 2003) to more
commonly employed methods based on regression and correlation
analysis (Anyamba et al., 2001; Brown et al., 2006; Buermann et al.,
2003; Gong & Ho, 2003; Gong & Shi, 2003; Gurgel & Fereira, 2003;
Herrmann et al., 2005; Huemmrich et al., 2005; Jiang et al., 2010; Los
et al,, 2001; Nezlin et al., 2005; Prasad et al., 2007; Sarkar & Kafatos,
2004; Studer et al.,, 2007; Verbesselt et al., 2006; Wang et al., 2005;
White et al., 2009; Zhou et al., 2001).

Second, time series similarity has been employed as a relative
criterion to numerically characterize the relationship between time
series, not to derive statistical inferences, but to provide a decision
criterion to cluster/discriminate time series. For example, in several
classification approaches the similarity measures supply the premise
to cluster the satellite pixel time series data in homogeneous groups
based on minimization of within group temporal similarity and
maximization of between group temporal similarity. The temporal
behavior of these clusters can then serve to characterize and classify
them (Azzali & Menenti, 2000; Brown et al., 2007; Defties et al., 1995;
Friedl et al., 2010; Huang & Sieger, 2006; Lhermitte et al., 2008). In
change detection approaches, on the other hand, the similarity
measures allow to discriminate changes within one time series (e.g.,
the change in vegetation growth between different years; Bayarjargal
et al., 2006; Lambin, 1996; Lambin & Strahler, 1994; Linderman et al.,
2005; Vanacker et al., 2005).

Despite the generalized use of these time series similarity
measures, there is no fixed definition of time series similarity (Liao,
2005). Accordingly, the remote sensing literature contains reference
to a variety of strategies to evaluate time series similarity, ranging

from absolute similarity (e.g., SVD, CCA, regression and correlation
analysis) to relative similarity measures such as distance measures
(e.g., Euclidean distance; Lambin & Strahler, 1994), correlation
measures (e.g., correlation coefficient; Geerken et al., 2005b), or
principal component analysis (PCA; Eastman & Fulk, 1993), Fourier
transform (Azzali & Menenti, 2000), and metric based measures
(Lloyd, 1990). Many of these time series similarity measures do not
differ from similarity measures used for other data series types (e.g.,
in the spectral or spatial domain) or from classical statistical analysis
(e.g., regression analysis). Care should however be taken when
applying these similarity measures as several of the underlying
assumptions (e.g., stationarity, absence of serial correlation) are not
always met or explicitly considered in real-world applications,
resulting in an overestimated similarity (Bence, 1995; Granger &
Newbold, 1974; Lin & Brannigan, 2003; Meek et al., 1999; Olden &
Neff, 2001; Verbesselt et al., 2006; Yule, 1926). In this context, a
variety of research and review papers have stressed the importance of
understanding the evaluation criteria and temporal statistics in
different domains ranging from pattern recognition (Halkidi et al.,
2001; Liao, 2005) to climatology (Fovell & Fovell, 1993; Gong &
Richman, 1995; Mimmack et al., 2001; Yiou et al., 1996; Zwiers & Von
Storch, 2004) and oceanography (Mantua, 2004). Nevertheless, a
quantitative study summarizing and comparing the existing similarity
measures has not been performed. Gong and Richman (1995) and
Mimmack et al. (2001) compared the frequently used Euclidean
distance, Mahalanobis distance and correlation coefficient similarity
and discussed the consequences of using PCA transforms, but did not
incorporate the other similarity measures frequently used. However,
with the growing importance of satellite time series data in support of
research on climate change (Badeck et al., 2004; Potter & Brooks,
1998; White et al., 2005) and vegetation dynamics (Duchemin et al.,
1999; Hill & Donald, 2003; Lu, Raupach, et al., 2003) there is a strong
need for a more comprehensive understanding concerning the
existent similarity measures. This understanding is specifically
important since many of these similarity measures serve as
underlying decision criterion in several time series clustering and
change detection techniques and choice of the similarity may affect
the final classification and change detection outcome (Mimmack et al.,
2001).

This paper aims to address the current need for a more thorough
comparison and a broader understanding of the available time series
similarity measures used in classification and change detection
approaches based on temporal trajectory analysis. The objectives
were (i) to present an overview of the commonly used similarity
measures that provide the decision criterion for these approaches, and
(ii) to quantitatively compare the sensitivity of these measures in
function of varying time series and ecosystem characteristics. To
address these objectives, firstly the characteristics of multi-temporal
remote sensing data and ecosystem dynamics are discussed and a
summary of the commonly used similarity measures in remote
sensing literature is presented (Section 2). Secondly, the performance
of the commonly used similarity measures is quantitatively evaluated
by means of Monte-Carlo simulations based on three data sets of
global land ecosystems dynamics (Sections 3-5). Finally, the
importance of ecosystem and time series characteristics for similarity
measure selection is illustrated in a case study based on multi-
temporal land cover classification (Section 6).

2. Background

The ability of any methodology to classify or detect changes in
temporal trajectories depends on a variety of choices, where the
selection of data (e.g., based on spatial, spectral, and temporal
characteristics) and methodology (e.g., based on the characteristics
of the time series similarity criterion) should be driven by the
ecosystem dynamics one wants to discriminate in relation to the
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variability one wants to identify or account for. In this context, this
section gives an overview of some typical remote sensing data time
series (Section 2.1), how they represent ecosystem characteristics
(Section 2.2). Additionally, the theoretical background of previously
applied time series similarity measure in remote sensing literature is
given to provide a thorough comparison and broader understanding
of their characteristics (Section 2.3).

2.1. Multi-temporal remote sensing data

2.1.1. Data characteristics

Several optical space-borne sensors with different temporal and
spatial resolutions allow regular monitoring of the different temporal
properties of ecosystem dynamics as they provide multi-temporal
measurements of the land surface. In this context, sensors that provide
data on an intra-annual time scale are particularly useful as they can be
used to monitor the seasonal temporal trajectory driven by plant
phenologies sometimes. These sensors may be separated based on
their temporal and spatial characteristics for describing the ecosystem
characteristics. First, several coarse to moderate spatial resolution
sensors (0.25-1 km) with high temporal resolution (1-3 days), such
as the Moderate Resolution Imaging Spectroradiometer (MODIS; Beck
et al, 2006; Fensholt et al, 2004), Medium Resolution Imaging
Spectrometer (MERIS; Dash et al., 2007; Dash et al., 2010), Advanced
Very High Resolution Radiometer (AVHRR; Fensholt et al., 2006; Julien
& Sobrino, 2009b; White et al., 2005), Advanced Along Track Scanning
Radiometer (AATSR; Soria & Sobrino, 2007), and SPOT-Vegetation
(VGT; Lhermitte et al., 2008; Verbesselt et al., 2007) have been proven
useful for monitoring vegetation dynamics at regional to global scales.
The main advantage of these sensors is the high temporal resolution of
their observations, which allows to focus on the temporal trajectory.
However, their rather coarse spatial resolution limits the spatial
patterns that can be resolved, which makes them less suitable for use
in small-structured ecosystems. In these cases, time series of higher
spatial resolution data such Landsat TM/ETM+ (30 m) offer higher
potential (Cohen & Goward, 2004), but their temporal coverage
(16 days) in combination with possible cloud contamination (Ju & Roy,
2008) confines the image availability to a few scenes per year and this
may limit the analysis of intra-annual dynamics (e.g., Lhermitte et al.,
2011; Veraverbeke et al.,, 2010). Nevertheless, several authors
successfully applied time series analysis techniques to Landsat data
to assess intra-annual vegetation dynamics (Brown et al., 2006;
Simonneaux et al., 2008; Vogelmann & DeFelice, 2003) instead of only
focusing on inter-annual changes (Knudby et al., 2010; Lawrence &
Ripple, 1999; Matricardi et al., 2010; Olthof et al., 2008; Rdder, Hill, et
al.,, 2008; Roder et al., 2008). Besides, the use of very high spatial data
with high revisit capacities offers strong possibilities to monitor intra-
annual dynamics. For example, FORMOSAT-2 provides images with
daily observations and 2 m spatial resolution (Courault et al., 2008;
Duchemin et al., 2008; Hadria et al., 2010), whereas IKONOS or
Quickbird have below 1 m spatial resolution and can use their off-
nadir viewing capacity to deliver images with a high temporal
frequency.

Regarding spectral coverage, these sensors cover a variety of
wavelengths useful to represent the ecosystem dynamics (Carrao
et al., 2010; Kerr & Ostrovsky, 2003; Thenkabail et al., 2004).
Moreover, a variety of biophysical parameters (e.g., LAI) and
vegetation indices that relate to vegetation parameters (e.g., the
commonly used Normalized Difference Vegetation index (NDVI) and
Enhanced Vegetation Index (EVI)) have been derived from these
spectral wavelength information to capture essential temporal
vegetation properties such as green leaf biomass, LAI, percent green
cover, and annual primary production (Bannari et al., 1995;
Bayarjargal et al.,, 2006; Carlson & Ripley, 1997; Glenn et al., 2008;
Huete et al., 1997; Huete et al., 2002; Justice & Hiernaux, 1986; Kerr &
Ostrovsky, 2003; Pettorelli et al., 2005; Seiler et al., 2007).

2.1.2. Time series characteristics

The spatial, spectral, and temporal characteristics of the remote
sensing data results in time series data, whose characteristics (e.g.,
serial correlation, stationarity, temporal resolution, noise, unequally
spaced observations or missing values) will affect the performance of
any classification or change detection approach (Mimmack et al.,
2001).

e Serial correlation occurs when time series values are correlated
between different temporal observations within one time series.
This type of correlation in ecosystem time series is mainly caused by
the seasonal variation of vegetation (Zoffoli et al., 2008), where
temporal observations are not independent and may contribute
overlapping information gain (Carrao et al., 2008).

¢ Time series stationarity, i.e. invariance of statistical properties over
time (Davis et al., 1994; Lin & Brannigan, 2003), is another important
characteristic that may affect the similarity measure performance.
For example, temporal observations with larger variance may
dominate the behavior of several similarity measures when the
time series' variance is not constant over time (Jain et al., 1999).

e Temporal resolution is another important factor as the time interval

between consecutive observations can vary significantly. This can

be due the sensor characteristics (e.g., daily MODIS vs. 16-day

Landsat images), but can also be the result of pre-processing steps

such as compositing. Compositing is a process that selects for each

pixel the best observation among all available within a period of
time based on cloud-free properties or an alternative maximization
of desired signal (Cihlar et al., 1994; Holben, 1986; Viovy et al.,

1992). Temporal resolution will determine the serial correlation

between temporal observations and the temporal detail that can be

distinguished. For rapidly changing dynamics, a high temporal
resolution will be essential (Lhermitte et al., 2011; Veraverbeke
et al,, 2010), whereas for observations with high serial correlation
using more observations will contribute less to the overall

performance (Carrao et al., 2008).

Noise in the satellite time series may be the result of varying

atmospheric conditions, sun-sensor-surface viewing geometry,

sensor disturbances, geometric errors, misregistration, mixed
pixels, surface anisotropy, and clouds or cloud shadows (Hird &

McDermid, 2009; Jonsson & Eklundh, 2004). Although all these

noise components reduce the signal to noise ratio (SNR), their effect

may be very different. For example, the simultaneous presence of
several uncorrected noise components (e.g., geometric errors, sub-
resolution changes, or atmospheric conditions; Fig. 1b) may cause
false highs and lows which are often assumed to be random or
white noise (Lucht & Lewis, 2000; Vasseur & Yodzis, 2004). Cloud
cover, snow or shadow, on the other hand, shows a typical effect of
increased or decreased observation values (e.g., increase in blue
reflectance and decrease in NDVI) and therefore introduces
positively or negatively biased errors (e.g., Fig. 1c). This results in

a biased error structure, where, for example, high values are more

trustworthy than low ones in NDVI time series (Chen et al., 2004;

Jonsson & Eklundh, 2002; Roerink et al., 2000). Moreover, other

noise models might affect the time series data (e.g., long term trend

due to sensor drift). Consequently, an understanding of noise

properties is essential (e.g., noise color; Vasseur & Yodzis, 2004).

e Unequally spaced observations or missing values often occur in
satellite time series. For example, not all satellites have regular
revisit times or cloud cover can result in a number of consecutive
missing values in the time series of satellite data, causing unequally
spaced observations of valid data (Ju et al., 2010).

Due to the impact of these characteristics on any many classi-
fication or change detection approach, adequate pre-processing steps
are often essential. Among others these steps may include: (i) the
extraction of non-serially correlated metrics to avoid serial correlation
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Fig. 1. lllustration of time series characteristics and ecosystem dynamics: a) temporal trajectory characterized by baseline and seasonal phenological cycle; b) white or random noise;
c) biased noise; d) amplitude scaling; e) amplitude translation; f) time scaling; g) time translation; and h) shape changes.
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(Sakamoto et al., 2005; Verbesselt et al., 2006; Verbesselt et al., 2006),
(ii) the differencing of observations to remove non-stationarity
(Verbesselt et al., 2009), (iii) the application of atmospheric
correction, normalization or bidirectional reflectance distribution
function (BRDF) corrections to minimize noise effects (Ju et al.,
2010; Latifovic et al., 2003; Vermote et al., 2009), (iv) compositing to
minimize cloud effects and obtain equally spaced observations that
are less affected by serial correlation (Cihlar et al., 1994; Holben,
1986; Viovy et al., 1992), and (v) the application of interpolation or
curve fitting techniques to remove spurious observations, interpolate
missing values, and obtain equally spaced observations (Chen et al.,
2004; Jonsson & Eklundh, 2004; Julien & Sobrino, 2009a; Kang et al.,
2005; Roerink et al., 2000).

2.2. Ecosystem characteristics

An understanding of how ecosystem dynamics affect the seasonal
temporal trajectory is crucial before specifying the ecosystem
variability one wants to identify. Generally, these temporal trajecto-
ries are characterized by a baseline (e.g., due to soil background or
understory vegetation out of the growing season) and a seasonal
phenological cycle (Fig. 1a) with a vegetation specific amplitude
(defined as the difference between the seasonal peak of the time
series and the baseline), timing (defined as the time location of the
seasonal peak of the time series due to timing of green-up and
senescence), and shape (e.g., due to rate of green-up and senescence
and intra-seasonal variability). Changes in ecosystem dynamics can
consequently affect the baseline, amplitude, timing, and shape
characteristics of the time series, resulting in amplitude effects (i.e.,
amplitude scaling and translation), timing effects (i.e., time scaling
and translation), or shape effects.

Amplitude effects result in changes in the difference between the
seasonal peak of the time series and the baseline. Amplitude scaling
can be compared to intensity variations and occurs when the seasonal
peak has been stretched or compressed in the y-axis (Fig. 1d). Myneni
et al. (1997), Eklundh and Olsson (2003), Geerken et al. (2005b), and
Heumann et al. (2007) illustrated for NDVI time series that amplitude
scaling could be related to changes in vegetation vigor or coverage,
changing the height peak of the NDVI curve. Amplitude translation
(i.e., when the time series has been shifted in the y-axis; Fig. 1e), on
the other hand, was related to shifts in the baseline or background
reflectance (Geerken et al., 2005b). Eklundh and Olsson (2003) and
Heumann et al. (2007), moreover, related reduced amplitudes to a
combined effect of amplitude scaling and translation in wetter
regions, as they noticed an increase in minimum seasonal NDVI and
no change in maximum seasonal NDVI due to saturation at high
vegetation densities. This results in a NDVI temporal trajectory with
higher baseline (i.e., positive amplitude translation) and lower
amplitude range (amplitude scaling factor <1).

Timing effects occur when the time location of the seasonal peak of
the time series has changed. For example, time scaling (i.e., when the
time series has been stretched or compressed in time, changing the
width of the seasonal trajectory; Fig. 1f) has been associated by Reed
et al. (1994), Eklundh and Olsson (2003), Hill and Donald (2003),
Heumann et al. (2007), and Wardlow et al. (2007) to changes in the
length of the growing season. Additionally, they demonstrated that
time translation (i.e., when the time series has been shifted in time
without changing the width of seasonal trajectory; Fig. 1g) would
occur primarily due to a change of the raining season, resulting in an
earlier or later onset of the growing season but similar length of the
growing season.

Shape effects arise when the shape of temporal profile has been
changed. These can be the result of amplitude or timing effects (e.g.,
time scaling clearly affects the shape of the temporal profile), but can
also be the result of other types of change (e.g., disturbances, land
cover/land use change) that have no determined scaling or translation

effect on the time series. For example, Evans and Geerken (2006) used
a classification algorithm for vegetation types or land use practices
that is invariant to variations in amplitude scaling, amplitude
translation and time translation, that may be caused by differences
in climate, background or topography, but are unrelated to the
vegetation type. Verbesselt et al. (2010a), Verbesselt et al. (2010b),
Lhermitte et al. (2011), and Veraverbeke et al. (2010), on the other
hand, used shape changes of the temporal trajectory is to study
changes in the vegetation type and its properties.

2.3. Time series similarity measures

Finally, the knowledge of data characteristics and ecosystem
dynamics one wants to discriminate will determine the selection of
the time series similarity measure, represented by D, that provides
the decision criterion for the classification or change detection
approach. These D can be grouped into three major categories
depending upon whether they work (i) directly with original time
series data, (ii) indirectly with transformations extracted from the
original time series data, or (iii) indirectly with metrics derived from
the original time series data. An additional overview of the D's
discussed here is given in Table 1.

2.3.1. Original time series data approaches

The original time series data approaches calculate D directly from
the original time series value without applying any transformation to
the data. Here, two approaches can be distinguished: (i) distance and
(ii) correlation measures.

2.3.1.1. Distance measures. The most commonly used distance
measures in classification or change detection approaches are derived
from the Minkowski distance (Dpgn; Jain et al, 1999), as it is a
generalization of both the Euclidean distance (Dg) and the Manhattan
distance (Dpqn). The Minkowski distance between two individual
time series fP(t) and f9(t) collected in time t, for pixels p and g
respectively, is given by:

1

N ¥
DMink = ([; |ftp _ftq |r> (])

where f is the f°(t) time series value at moment t and N is the number
of samples in the time series and r is a user defined integer. Withr=1,
Eq. (1) defines the Manhattan distance D4, Whereas r = 2 produces
the Euclidean distance Dg, which is more sensitive to outlier values
(e.g., noise) due to its non-linear character. The main advantage of the
Minkowski distances is that they are easy to calculate and interpret.
Therefore, they have been applied in a variety of approaches, ranging
from change vector analysis (Bayarjargal et al., 2006; Friedl et al.,
2002; Lambin & Ehrlich, 1997; Lambin & Strahler, 1994; Linderman et
al., 2005; Serneels et al., 2007) to landcover classification (Brown et
al., 2007; Huang & Sieger, 2006; Loveland et al., 2000; Simoniello et al.,
2008; Viovy, 2000; Xia et al.,, 2008), where D¢ often provides the
similarity measure that is evaluated in several clustering algorithms
(ISODATA, K-means, minimum distance). The Minkowski distances do
not take into account the time interval between measurements,
allowing them to be applied to unequally spaced observations (e.g., in
a Landsat time series). Moreover, standardized Minkowski distances
have been calculated that take into account the amount of
observations (Liao, 2005). This allow to compare time series of
unequal length and with missing values. Soudani et al. (2008),
Lhermitte et al. (2010), Lhermitte et al. (2011), and Veraverbeke et al.
(2010), for example, calculated Dg based on only corresponding
observations (N’) in time series with missing data and subsequently
divided Dg by N'.
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Table 1
Summary of time series similarity measures D.

D Characteristics Examples

Dyan  Quantifies the absolute magnitude of Modified version of temporal change

the difference between time series  vector (Bayarjargal et al., 2006;
Linderman et al., 2005; Serneels et
al,, 2007)

Dg Quantifies the Euclidean distance of Classical temporal change vector

the difference between time series  (Bayarjargal et al., 2006; Friedl et al.,
2002; Lambin & Ehrlich, 1997;
Lambin & Strahler, 1994), minimum
distance classification (Brown et al.,
2007; Loveland et al., 2000),
ISODATA classification (Huang &
Sieger, 2006; Xia et al., 2008), K-
means classification (Simoniello et
al., 2008) and classification (Viovy,
2000), control pixel selection
(Lhermitte et al., 2010; Veraverbeke
etal, 2010)

Dyan Quantifies the difference between Maximum likelihood classification
time series but accounts for non- (Bergen et al., 2005; Defries &
stationarity of variance and temporal Townshend, 1994; Ehrlich & Lambin,
cross-correlation 1996; Veraverbeke et al., 2010),

Mahalanobis change vector

(Bontemps et al., 2008)

Correlation based classification

(Brown et al., 2007; Geerken et al.,

2005a,b), control pixel selection

(Lhermitte et al., 2010), cross-

correlogram spectral matching (Van

der Meer & Bakker, 1997; Wang et

al., 2009)

Benedetti et al. (1994) and Lobo and

Maisongrande (2008)

Dcc Quantifies the degree of linear
relationship between time series

Dpca  Quantifies the difference between
times PCs that explain the majority
of the variance

Drer - Quantifies the combined effect of FT  ISODATA and minimum distance
amplitude and phase differences classification based on FT

components (Azzali & Menenti,
2000; Moody & Johnson, 2001;
Wagenseil & Samimi, 2006)

De Quantifies shape similarity based on Classification (Evans & Geerken,
derived FT amplitude and phase 2006)
differences

Dp,  Quantifies the FT of the difference
between time series

DN Quantifies the difference between
time series based on specific
designed metrics

Hierarchical image segmentation
(Lhermitte et al., 2008)

Metric change detection (Borak et al.,
2000; Linderman et al., 2005),
classification and regression trees
(Hansen et al., 2003; Lloyd, 1990)

Although the Minkowski distances are mathematically simple,
they have certain limitations. Most importantly, they do not account
for non-stationarity of variance or temporal cross-correlations in the
data set (Mimmack et al., 2001). As a result, the observations with the
largest variance (if not standardized) will dominate Eq. (1) as they
contribute more strongly to the similarity (Jain et al., 1999). Solutions
to this include the use of the Mahalanobis distance (Dyq,; Mahalanobis,
1936):

Dyan = /(2 —F)T X1 (72 —f9) )

where 3 is the covariance matrix of the time series, which needs to be
estimated beforehand. The assumption behind the Dy, is that all
points in the data set have temporal distributions that can be
represented by 3. Since this is not generally true, most studies
calculated 3 of each class or category separately and used Dy, as the
probability of belonging to a class. Using this probabilistic interpre-
tation, it corresponds to selecting the class with maximum likelihood
and Dyqp, provides the similarity measure for the maximum likelihood
classifier. Defries and Townshend (1994), Ehrlich and Lambin (1996),

Bergen et al. (2005), and Veraverbeke et al. (2010) used this approach
to classify land cover using VI time series, whereas Carrao et al. (2008)
used Dyqn to determine optimal band-timing combinations for land
cover classification. Bontemps et al. (2008), on the other hand, used
Dpan to calculate the distance from an unchanged reference to
quantify the probability of change. The drawback of Dy, is the need
of prior information on the covariance matrix. This means that one
needs to estimate the covariance matrix of the data or of each class/
category beforehand. This estimation is usually based on samples
known to belong to each class or category (e.g. after a supervised
classification).

2.3.1.2. Correlation measures. The best known correlation measure is
Pearson's cross-correlation (Dcc) coefficient (Liao, 2005; Rodgers &
Nicewander, 1988), which is defined as the degree of linear
relationship between time series:

(2 F)- (1.7

\/ A (ftp _fp)z*\/ ¥l (frq—s —fq)z

Dee =

Where ff and f{ are the time series values at moment t, f? and f9
are the means of the corresponding series, s is the lag between both
time series, and N is the length of the time series. If D¢ is computed
for s=0, it estimates the time series similarity without time shift.
When Dcc is calculated for one time series, i.e. when fP(t) =f(t), it
measures the serial correlation (Meek et al., 1999). Dcc is 1 in case of
an increasing linear relationship, —1 in case of a decreasing linear
relationship, and some value in between in all other cases. Since D¢ is
a measure of a linear relationship between time series and does not
evaluate the difference in time series values, amplitude scaling or
translation will not affect Dcc.

Dcc is often used as an similarity measure for remote sensing time
series. Geerken et al. (2005a) and Geerken et al. (2005b), for example,
used D¢c between NDVI time series as a measure to classify the spatial
coverage variations of rangeland vegetation, whereas Lhermitte et al.
(2010) applied it for control pixel selection and Brown et al. (2007)
added it as a measure to classify crop types. Van der Meer and Bakker
(1997) based the cross correlogram spectral matching (CCSM)
classification on correlation between spectra at different s and
Wang et al. (2009) applied it to NDVI time series data for identifying
interannual landcover changes.

2.3.2. Transformation approaches

The transformation approaches apply a transformation (e.g.,
principal component analysis (PCA) or Fourier transform (FT)) on
the time series to assess similarity. Generally, this transformation has
two objectives: (i) to reduce the dimension of the time series without
losing too much information, and (ii) to isolate some specific
components.

2.3.2.1. PCA. PCA was first introduced by Pearson (1901), and
developed independently by Hotelling (1933). Its background and
applications is extensively discussed in Jackson (1991) and Jolliffe
(2002). PCA transforms the time series data of the original multi-
temporal space to a new uncorrelated coordinate space, so that the
largest variance is located on the first coordinate (called the first
principal component), the second largest variance on the second
coordinate, and so on. This can be done by using standardized and
unstandardized principal component analysis, where the former
allows to solve non-stationarity of variance. Because of the maximi-
zation of the variance in the first components, PCA allows data
reduction when retaining only those characteristics of the data set
that contribute most to its variance. Moreover, for some applications it
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allows to relate specific principal components (PC) to specific
phenomena based on empirical analysis.

PCA has been widely used in remote sensing studies to isolate
specific components related to vegetation dynamics (Anyamba &
Eastman, 1996; Eastman & Fulk, 1993; Gurgel & Fereira, 2003; Hall-
Beyer, 2003; Hirosawa et al., 1996) or to perform classification based
on time series similarity (Benedetti et al., 1994; Lobo & Maisongrande,
2008). In the latter context, PCA is used as a way of dimensionality
reduction before calculating the similarity between m selected PCs:

3 (P —pCy)? )

k=1

Dpcy =

where PC}, and PC}! are the kth principal component of time series p
and g, respectively, and m is the number of selected principal
components.

One of the main advantages of the Dpc4 is the transformation to
successive components that explain progressively less of the total
data set variance. Usually, high order components will contain
information that is essentially noise with respect to the phenomenon
analyzed (Jackson, 1991; Jolliffe, 2002), and so can be disregarded
when calculating Dpcs. Additionally, noise elements such as long-
duration cloud events or sensor and processing problems are likely to
be isolated in their own components, and thus may be more easily
separated from the desired signal (Hall-Beyer, 2003). However, it is
always possible that some high order component, containing a very
low proportion of total data set variance, might represent informa-
tional variance for a small area. Therefore the selection of m PCs is an
essential step as it will determine the output of all algorithms that use
the Dpcy (Mimmack et al., 2001). Several of these selection approaches
are discussed in Jackson (1991) and Jolliffe (2002).

2.3.2.2. Fourier transforms. Also the FT has been frequently used for
similarity assessment of ecosystem dynamics, since it allows the
decomposition of noise-affected time series into periodic signals in
the frequency domain. By performing the analysis in the frequency
domain, a distinction can be made between signals with a specific
period such as frequency terms related to vegetation dynamics and
other frequency terms (Azzali & Menenti, 2000; Canisius et al., 2007;
Jakubauskas et al., 2002).

The FT can be used to transform any equidistant discrete time
series f(t) into a set of scaled cosine waves with unique amplitude A,
and phase shift ¢, (Bracewell, 2000):

N-1
f(t) =Ay + 2 Ay cos(2mkt + ¢y) (5)
k=1
with
Ay = \JFZ + F? (6)
and
Fi
¢ = arctan{ — 7)
F

where t is an index representing the sample moment, f; is the time
series value at moment t, k is the frequency of the FT components (i.e.,
the number of cosine wave cycles over the time series), N is the
number of samples in the time series, F; and Fj; are the real and
imaginary part in Euler's equation, respectively. Together A, and ¢
describe the kth frequency FT component as one cosine wave in the
frequency domain, whereas the sum of the cosine waves represents
the original time series of each pixel (Bracewell, 2000).

Several authors have used the FT of VI time series as the basis for
time series similarity assessment. Firstly, Azzali and Menenti (2000)

suggested a distance measure based on the Euclidean distance
between m selected amplitude and phase components of the fast
Fourier transform (Dgr):

Dpr =

S-ar+ L o4y ®)

Since Dger incorporates amplitude and phase, it is sensitive to
amplitude scaling, time scaling and time translation. The sensitivity to
amplitude translation will depend on the inclusion of the 0™ FT
component in the Dgg, since this component represents the mean of the
time series. Azzali and Menenti (2000) used the amplitude and phase of
the Oth, 1st, and 2nd FT components of one year NDVI time series to
classify vegetation-soil-climate units. Moody and Johnson (2001) and
Wagenseil and Samimi (2006) also used the Oth, 1st, and 2nd FT
components, but they focused on two and five year NDVI time series.

Secondly, Evans and Geerken (2006) proposed a distance measure
D¢ that mainly quantifies shape similarity:

D, =3 é (g —ozk) / :2] (6 —ok)2 )

where oy and 6 are the relative amplitude and phase for each FT
component:

A
et (10)
and
0, = (ﬂ) [2 + cos(kd —y)] ()
A] ref

and o and 6} are relative amplitude and phase for a reference class.
D¢ is zero if two time series, represented by their m Fourier
components, have the same shape and increases as the differences
between the shapes increases. Due to the use of the relative amplitude
and phase, D¢ is invariant to amplitude translation, amplitude scaling
and time translation. This invariance was necessary for Evans and
Geerken (2006) as they focused on shape similarity for classifying
rangeland without taking modifications related to a plant phenology
into account.

Finally, Lhermitte et al. (2008) proposed a Fy-distance criterion
(Dp) for hierarchical image segmentation based on time series
similarity. This criterion employs the Euclidian distance between FT
components of the same frequency as measure of similarity. The
dashed line A} ~? in Fig. 2 illustrates Dp. for the k" frequency FT
component of two time series, represented by p and g. The F-distance
incorporates both parameters that represent the FT component, A
and ¢y, respectively, into one similarity measure. Mathematically, Dg
corresponds to subtracting two time series, fP(t) and f9(t), respec-
tively, for each observation in the temporal sequence and using the
amplitude of the resulting difference vector f? ~9(t):

> + (F(p—F(q)*

= \/[F(p—0) + F,i(p—q)2
Based on the AL 7 of the selected m FT components, Dg, can be
calculated:

A=\ (Fo(p)—F{(q)

(12)

N—1
D= X wa™ (13)

where A}~ is the Fi-distance between the time series of p and g
respectively, and wy is the weight of the k™ frequency FT component.
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Fig. 2. Illustration of the Fi-distance for the kth frequency FT components of two time
series, represented by p and q. F¢ and Fj are amplitudes of the cosine and sine waves in
rectangular notation, while A, and ¢, are the amplitude and phase in polar notation,
respectively. Ay 7 is the distance between points p and q used in the Fi-distance
criterion.

Modification of the weights allows to enhance (high wy) or diminish
(low wy) the influence of each component on D, and to accentuate
specific components in the similarity measure. As a result, these
weights will determine the sensitivity to time series differences. For
example, when wo=0 the Dg, will be insensitive to amplitude
translations as the offset value in the y-axis is neglected in the Dg
calculation.

The main advantage of all these FT distances is the possibility to
distinguish signals with a specific period. This is particularly
amendable for detecting periodic patterns in time series of satellite
data, such as daily or monthly time series of land surfaces that contain
strong systematic periodic patterns related to vegetation features and
nonsystematic high frequent image noise. Hence, information related
to temporal vegetation characteristics can be separated from noise
originating from atmospheric and viewing angle effects, cloud
contamination, and other types of high frequency factors. This noise
separation is also one of the main arguments in Moody and Johnson
(2001), Evans and Geerken (2006), Wagenseil and Samimi (2006),
and Lhermitte et al. (2008) for their choice for the FT approach.
However, care should be taken as the assumption of a periodic and
sinusoidal signal is often not satisfied for the complex shape of
ecosystem dynamics, and FT analysis may therefore require high
frequency terms for suitable approximation (Wagenseil & Samimi,
2006). Moreover, the separation between signal and noise will always
depend on the appropriate selection of the m components or weights
Wg.

2.3.3. Metric approaches

The metric approaches convert the raw data time series into a
number of parameters that describe the time series in function of
simple statistics, and subsequently calculate similarity based on these
statistics. For ecosystem time series these metrics typically represent
some aspects of timing, duration and intensity of photosynthetic
activity (e.g., begin of the growing season, end of the growing season,
annual mean, maximum, minimum, range, etc.; Borak et al., 2000;
Defries et al.,, 1995; Hill & Donald, 2003; Lloyd, 1990; Pettorelli et al.,
2005; Reed et al., 1994; Samson, 1993; White et al., 2009; Zhang et al.,
2003; Zhang et al., 2006). Although these metrics are excellent
descriptions of a particular time series phenomenon, they provide
characteristics that are not inter-comparable as they represent

different characteristics on different scales. Consequently, adapted
scale invariant similarity measures must be used.

Defries et al. (1995) and Hill and Donald (2003) proposed an
unsupervised classification procedure based on the Mahalanobis
distance between several metrics in a maximum likelihood classifier.
Alternatively, Borak et al. (2000) proposed the use of the distance
between individual metrics (e.g., D, = metric(ff) — metric(fZ)). This
approach is very useful for detecting specific differences between time
series. Linderman et al. (2005), for example, used the D, of integrated
EVIs to distinguish phenology differences from other changes. Borak
et al. (2000) showed moreover that the combination of several Ds of
individual metrics performed better to discriminate between changes.
Lloyd (1990) and Hansen et al. (2003) combined also several D,s in
their classification and regression trees.

One of the main advantages of the metrics based similarity is that
they can be designed completely according to user requirements. For
example, if one is interested in the length of the growing seasons, it is
possible to design a metric that calculates begin and end of the
growing season and to use the D, of these metrics as indicator of time
series similarity. On the other hand, this user input is also the main
disadvantage, since external knowledge is essential to interpret the
results.

3. Methods

To address the objective of quantitative comparison of the
different Ds, a sensitivity analysis based on Monte Carlo (MC)
simulations was performed using three data sets (NDVI, EVI, and
LAI) of global land ecosystem dynamics. The MC simulations allow to
control the variability in time series and ecosystem characteristics,
which is difficult when analyzing actual ecosystem time series where
the variability of these characteristics is generally predetermined. As a
result, the MC simulations provide a means to assess the sensitivity of
each D in function of varying degrees of amplitude, timing and noise
effects.

3.1. Satellite time series data

The global land ecosystem time series data were derived from the
MODIS Land Product Subsets based on the MODIS ASCII Subset for the
northern hemisphere (Oak Ridge National Laboratory Distributed
Active Archive Center (ORNL DAAC), 2010), where the 2001-2006
Terra MODIS Landcover (MCD12Q1), NDVI (MOD13Q1), EVI
(MOD13Q1) and LAI (MOD15A2) products for 7 x 7 km areas around
1085 flux towers or field sites in the northern hemisphere were
selected (Fig. 3). The MCD12Q1 data provide annual estimates of the
17-class International Geosphere-Biosphere Programme classifica-
tion (IGBP) landcover (LC) type (Friedl et al., 2002; Friedl et al., 2010;
Loveland et al., 1995) for 14 x 14 0.5 km pixels around each flux tower
or field site, whereas the MOD15A2 represents LAI estimates for the
same sites based on 7x 7 1 km pixels with 8-day temporal resolution,
and the MOD13Q1 produces the site's NDVI and EVI values with a 16-
day temporal resolution for 28 x 28 0.25 km pixels.

Based on the MCD12Q1 data, a dominant LC type was determined
for each of the 1085 sites. Subsequently, the NDVI, EVI, and LAI time
series were extracted that correspond to the dominant LC type for
each site, resulting in a set of n;c sample time series per IGBP
landcover type. The five year NDVI, EVI and LAI data (2001-2006)
were subsequently divided in annual time series and all subsequent
analysis was based on annual time series and repeated for each year in
2001-2006. This annual approach allows to assess the dependence of
the results on the annual variability.

The time series of NDVI, EVI and LAI data were assumed to typify
each LC type, and, therefore, to represent global land ecosystem
vegetative cover dynamics. Since NDVI, EVI, and LAI data show a
different sensitivity to ecosystem vegetative cover dynamics, the use
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Fig. 3. lllustration of the MODIS ASCII Subset data for the northern hemisphere, representing the 2001-2006 Terra NDVI, EVI, and LAI products for 7 x 7 km around 1085 flux towers
of field sites. The « illustrates the location of the 1085 flux towers of field sites in the different LC types, represented by different colors. The time series of NDVI, EVI, and LAl show the
mean 4 standard deviation for each LC type, whereas the upper-right corner of each time series indicates n;, the number of sample time series per LC type in the data set.

of these three data sets allows moreover to compare the effect of
different time series characteristics (temporal resolution, serial
correlation, variance) on the sensitivity of D. This difference in
sensitivity is apparent in Fig. 3 where the mean of the NDVI, EVI, and
LAI time series for each LC type is represented. The NDVI has a higher
range than EVI, but EVI tends to saturate at higher LAls allowing more
accurate change detection in high density vegetation (Huete et al.,
2002). The LAI time series, on the other hand, show the highest
variability (between 0 and 5) and also shows the most abrupt changes
at the beginning and end of the growing season. Comparison of the

mean NDVI, EVI, and LAI times shows moreover that the amplitude,
baseline, timing of on-set and end of the seasonal cycles clearly varies
for LC types.

3.2. Time series properties

Since the performance of each D depends on the characteristics of
the time series data, descriptive statistics of the time series were
derived to understand the sources of variation in the sample time
series of each LC type. This includes analysis of the mean and variance
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per LC type over time, since these exemplify the variation related to
baseline, amplitude, timing, and give insight in the phenological
variability. Moreover, the serial correlation is derived to understand
the effect of timing effects on the MC simulations.

3.3. Time series similarity measures

Eight relative time series similarity measures (Dpjan, Dg, Dvah, Dco
Dpca, Drrr, Dg, D) were compared in the sensitivity analysis. These D
span the key concepts behind time series similarity and consequently
allow to determine the different aspects of sensitivity. The metric
based similarity measures were not included in this comparison, since
they depend entirely on the users requirements and related definition
of the metric (e.g., Defries et al., 1995). Therefore, comparing these
metrics would result in comparing user definitions based on
subjective selection criteria, which is beyond the scope of this study.

Dhan, Dg, and D¢ were calculated using the individual annual time
series, whereas the Dyq, was computed after estimating the covariance
matrix of each LC type. Dpca, Drer, Dg and D were computed based on
the components that explain the majority of the intra-annual ecosystem
variability. For Dpc, this implies the use of the three first standardized
PCs, whereas the Dgrr, Dz and D, were calculated based on the mean
component (k=0) and on the components with annual and bi-annual
frequency (k=1, 2). The Dg, applied equal weights to each Fourier
component (w,=0.33; k=0, 1, 2).

3.4. Monte Carlo simulation experiment

As a basis for the MC simulations, characteristic NDVI, EVI, and LAI
time series for each LC type (except for the Snow and Ice class, where
too few observations were available) were derived based on the n;¢
sample NDVI, EVI and LAI time series per LC type. This was done by (i)
taking all observations with good quality (based on the associated
data quality control flag) for each date and LC type, (ii) calculating the
mean and standard deviation for the NDVI, EVI, and LAI time series for
each date and LC type, and (iii) interpolating the mean and standard
deviation for specific observation dates Y\nglere no data were available.
Based on the time series of the mean f (t) and standard deviation
o"(t) for NDVI, EVI and LAI data for each LC type, sample time series
of each LC type can be generated using the equation proposed by
Viovy (2000):

0 =71 + a0 (14)
where « is a random value given by a pseudo-random generator that
follows a standard normal distribution N(u=0, 0=1). The use of
f(t) removes noise in the time series data due to its mean filter
effect, whereas the use of « allows to represent the variability around
the mean time series.

Subsequently, MC simulations were undertaken to introduce
amplitude scaling and translation, time scaling and translation, and

noise in the characteristic NDVI, EVI, and LAI time series of each LC
type. This was done by taking a simulated time series of Eq. (14) and
modifying it using the simulation equations of Table 2. Amplitude
scaling was consequently introduced by multiplying the time series of
Eq. (14) with B, where wyuy will determine how strong the scaling
effect is. Amplitude translation, on the other hand, was added by
introducing a random offset value, where w,g, determines the offset.
Time scaling was introduced elongating/shortening the original time
series with (3 observations, where —wr.<B<Wr. This results in
sample data sets where, for wr,. =1, time series are scaled randomly
one observation value, whereas for higher values of wr this scaling
differs randomly between —wrs. and wry. observation values. For the
elongated time series interpolation was used for observations in the
middle of the time series. For the shortened time series, on the other
hand, extrapolation based on previous year or next year observation
values was used. Time translation was introduced by applying random
shifts time to the sample time series of Eq. (14), where — wrg, <B<wrsp
determines the shift. As a result, time series are shifted randomly one
observation value for wrg, =1, whereas for higher values of wr, this
shift differs randomly between — wrys, and wys, observation values. For
each of these shifts, the same extrapolation technique as for time
scaling was used for the observations at the beginning or end of the
time series. White noise was added to the sample time series of
Eq. (14) by adding increasing levels of white noise, where wyy scales
the noise levels. Finally, biased noise was simulated by introducing
biased observations in the sample time series of Eq. (14). This was
done by replacing a number (wpy) of the sample time series values by
noise (biased low value of 0.1). This was done iteratively to generate
several sample time series with an increasing number (wgy) of noise
values.

The amount of variability introduced in the MC simulations
depends on the parameters Wase, Wash, Wrse, Wrshy Wwn, and wep,
which were defined according to Table 3. These parameters span a
wide variety of levels of introduced variability and allow to understand
the effect of different levels on Ds performance. The difference in wyg,
and wyyy for the NDVI, EVI and LAI data results from the observed data
value intervals of both data sets (i.e., most observed values in [0, 1]
interval for NDVI and EVI vs. [0, 5] interval for LAI) to obtain similar
effects for similar scaling parameters.

3.5. Sensitivity analysis

The MC simulations allow to quantitatively assess the effect of
Wase, Wash, Wrse» Wrsh, Wwn, and wgy on the different Ds. This was done
by calculating each D between (i) 500 sample time series of each LC
type from the MC simulations of Eqs. (15-20) and (ii) the
corresponding LC mean time series (f (t)). The retrieved D were
subsequently compared with the corresponding intra-class distance
Dic by calculating D/D;c. Dic represents the natural intra-class
variability of within class distances and is obtained by calculating
each D between (i) 500 sample time series of each LC type from the

Table 2

Equations for different Monte Carlo simulations.
Effect Equation Parameters
Amplitude scaling (fLC )+ ac" ( )) #B  (15) 3= pseudo-random value from normal distribution N(u=1, 0= Was)
Amplitude translation (f "C ) + ao ( )) + B (16) B= pseudo-random value from normal distribution N(p=0, 0= W)

7LC

Time scaling ) =7t + ad™(t) (17)
Time translation 0 =<t +B) + ao™(t+p) (18)
White noise i) = 7<) + ao™ (o) + By (19)
Biased noise 0 =71t + ao'(0) (20)

t'= randomly elongated or shortened (with (3 observations) time series. 3= pseudo-random
value from discrete uniform distribution (—wrs.<B<Wrg)
3= value that differs in time by a pseudo-random value from normal distribution N(u=0, 0=wwy)

B(t) = pseudo-random value from normal distribution N(1=0, o0=wyy)

t' = time series that consists of the original time series of Eq. (14) with a number (wgy) of observations

replaced by noise (biased low value of 0.1).
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Table 3
Parameter setting for the different Monte Carlo simulations.

NDVI and EVI LAI

Wase=0.02, 0.04,..., 0.2 Wase=0.02, 0.04,..., 0.2
wasn =0.01, 0.02,..., 0.1 wasn =0.01, 0.02,..., 0.1

Amplitude scaling
Amplitude translation

Time scaling wre=1,2,..., 10 Wise=2,4,...,20
Time translation wrp=1, 2,..., 10 Wrsh =2, 4,..., 20
White noise wyy=0.01, 0.03,..., 0.19 wyy = 0.05, 0.15...., 0.95
Biased noise wpy=1,2,..., 10 wpy=1, 2,..., 10

MC simyngtions in Eq. (14) and (ii) the corresponding LC mean time
series (f (f)).

Since D/Djc compares the introduced effects (D) with the standard
variability (Djc), it quantifies the magnitude of the introduced effects
relative to the intra-class variability. As a result, it allows to
intercompare the different Ds. This is more complicated when
analyzing absolute D values as they are defined on different scales.
Moreover, it implies that D/D;c should be interpreted relative to the
parameters settings in Table 3 in combination with the intra-class
variability in LC time series.

4. Results

All subsequent figures represent the mean outcome of the annual
analyses repeated in the 2001-2006 time interval. The choice to
represent the results by the mean outcome was driven by clarity
purposes and the small inter-annual variability between annual analyses.

4.1. Time series properties

Fig. 4 shows the basic time series statistics (i.e., mean and variance
over time, serial correlation) of the NDVI, EVI, and LAI time series. For
the mean time series it can be seen that, conform to Fig. 3, NDVI and
EVI time series show similar behavior, but that NDVI covers a wider
range than EVI. Furthermore, the LAI time series are not confined in
the [—1, 1] interval and show more abrupt changes at the beginning
and the end of the growing season.

The variance of the time series data indicates that NDVI and EVI
demonstrate a low intra-class variance (IC), but a much higher inter-
class variance. Moreover, a timing difference in inter-class variance
can be noticed between the NDVI and EVI data: the highest inter-class
variance appears outside the growing season for the NDVI and within
the growing season for the EVI data. This difference can be explained
by the sensitivity of NDVI and EVI to background reflectance. Since the
EVI is designed to be de-coupled of the canopy background
reflectance (Huete et al., 2002), it will not capture the variance due
to background reflectance, especially important outside of the
growing season. The variance of LAI data, on the other hand, shows
a clear seasonality, both in intra- and inter-class variance.

Comparison of the serial correlation reveals the difference in
temporal resolution for the NDVI, EVI (both 16 day) and LAI (8 day)
data, where the serial correlation decreases slower for LAI than for
NDVI and EVI due to the higher temporal resolution of the LAI data.
Additionally, it shows that the difference in serial correlation between
NDVI-EVI and LAI data is due to the observation interval, as similar
serial correlations are obtained for identical time lags (i.e., lag in
function of time, not in function of observation). For example, the
serial correlation at a lag of ten observations (i.e., a time lag of
10x 8 =280 days) corresponds to the serial correlation at a lag of five
NDVI and EVI observations (i.e., a time lag of 5x 16 =80 days). This
illustrates again serial correlation is driven by the seasonal cycle of
phenological variability (Zoffoli et al., 2008), but may show up
differently due to the temporal resolution of the data.

Mean time series
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4.2. Monte Carlo simulation

Figs. 5-7 illustrate the effect of a) amplitude scaling, b) amplitude
translation, c¢) time scaling, d) time translation, e) white noise, and f)
biased noise on the D/D;c values for the NDVI, EVI, and LAI time series
respectively. Based on the change of each similarity measure D in
function of Wasc, Wash, Wrse, Wrsh, Wi, and wpy, the sensitivity of each
D can be determined as large changes in D/Djc indicate high
sensitivity.

Generally, the introduced amplitude effects (i.e., amplitude scaling
and translation) result in smaller changes in D/D;c values than time
scaling, time translation or noise effects. This difference between
amplitude and timing-noise effects, however, is mainly the result of
the parameter settings in Table 3, which should be interpreted
relatively to the existent intra-class variability. Consequently, higher
values of wus. O Wy, relative to the intra-class variability will result in
higher sensitivities.

Comparison of the Ds shows that different responses to the
induced effects can be distinguished. Firstly, the Minkowski metrics
Dpan and D are sensitive to all introduced changes in Wasc, Wash, Wrsc,
Wrsh, W, and wgy, where Dyyqn/Dic values exhibit an almost linear
increase for all introduced changes and Dg/Djc shows a higher, often
non-linear sensitivity. This higher sensitivity can be explained by Dgs
non-linear character and responsiveness to outlier values.

Secondly, the PCA based distance Dpc4 performs very similar to
Dpan for amplitude and timing effects, whereas it shows a reduced
sensitivity when noise is introduced.

Thirdly, the Fourier based Dg, displays also an almost linear
increase for all introduced changes. Consequently, it resembles Dyq,,
with a similar sensitivity to amplitude scaling, a lower sensitivity to
amplitude translation, and a higher sensitivity to time scaling. For the
NDVI and EVI data, Dg, shows a higher sensitivity to noise than Dyqap,
but for the LAI data it is opposite.

Fourthly, the Mahalanobis distance Dy, shows the largest
absolute sensitivity to all introduced changes (Note: the Dj,, shown
in Figs. 5-7 is represented on a logarithmic scale). Relatively, however,
this sensitivity is especially strong when large deviations from the
intra-class variability are introduced by the MC simulations. These
large deviations from the intra-class variability occur, for example,
when time scaling and time translation effects are introduced that
cause large changes in the periods of green-up and dormancy which
differ strongly from the intra-class variability. It also explains the
difference in sensitivity of the NDVI, EVI, and LAI data sets to changes
in was, and wpy, as these data sets show clear differences in intra-class
variability (Fig. 4b). For example, the LAI time series are strongly
non-stationary with a lower intra-class variance outside the growing
season (Fig. 4b). Consequently, Dy, will give extra weight to the
changes introduced outside the growing season and less weight to the
introduced changes within the growing season. Since amplitude
translation relatively has a more pronounced effect outside the
growing season and biased noise relatively has a stronger effect
within the growing season, Dy, shows an increased sensitivity to
wasn and decreased sensitivity to wgy for the LAI data. The NDVI
and EVI data, on the other hand, show a stable intra-class variance
and will therefore account equally for the amplitude shift and
biased noise changes. However, as the absolute effect of biased
noise is much stronger than the effect of small amplitude shift
changes, NDVI and EVI data show a larger sensitivity to wgy than to
Wash.

Fifthly, the Pearson's cross-correlation coefficient displays the
expected unchanged D¢c values when amplitude effects are inserted.
However, when time scaling, time translation or noise effects are
introduced it results in almost linear increases in 2 — D and thus a
linear decrease in Dc.

Sixthly, the Fourier based similarity measures Dggr, D differ from
the other D as they demonstrate specific sensitivities. D, for example,

is very sensitive to time scaling effects (i.e., very steep increase of D¢
with Dry), less sensitive to time translation, and insensitive to
amplitude effects. Dger, on the other hand, shows a large sensitivity to
time scaling and translation (especially for the NDVI and EVI data) and
is less affected by amplitude effects. Both Dgrand D¢ show moreover a
high sensitivity to noise effects, although they were designed based on
the assumption that noise was eliminated by taking adequate FT
components.

5. Discussion
5.1. Performance of similarity measures

Based on the results, it can be seen that most D values increase
when the original time series are affected by changes in amplitude,
timing effects, or noise. However, the sensitivity to these changes is
not similar between all Ds and four main groups of similarity
measures with different sensitivities can be distinguished: (i) the
Minkowski metrics (Dpan, Dg), PCA based (Dpca), and Fi-distance
criterion (Dg), (ii) the Mahalanobis distance that accounts for
temporal correlation and non-stationarity of variance, (iii) Pearson's
cross-correlation D¢c that accounts for temporal correlation, and
(iv) the Fourier based measures (Dgr, Dg).

In the first group Dyan, Dg, Dpca, Dre Show similar behaviors with
subtle distinctive features. The similar behavior between these four
measures can be explained by the fact that they all are difference
measures that quantify the difference in time series values, whereas
the distinctive features are the result of their specific characteristics.
For example, Dy, and Dg quantify the difference in raw data values
(see Eq. (1)), but Dg is more sensitive to outlier values due to its non-
linear character.

Dpca is also a difference measure as the PCA transforms the data to
a new coordinate system based on a linear transformation, and Dpca
uses the difference of these PCs. Mathematically, Dpca is even identical
to D when all PCs are included. Consequently, the differences
between Dpcs and Dg are the result of reducing the number of PCs.
Due to the dimensionality reduction in this study, Dpca is less sensitive
to noise effects, since parts of the noise is expressed in the later PCs
that do not describe the majority of the total variance in the data set
and are not included in Dpcsa. Amplitude and timing effects, on the
other hand, are clearly captured by the first three PCs, resulting in
higher sensitivities. Nevertheless, the sensitivity of Dpc4 is still lower
than for Dg, but this can be explained by the dimensionality reduction,
since part of the variability due to the introduced effects is captured by
later PCs and thus not quantified. This stresses the importance of a
proper understanding of the captured variability (e.g., amplitude,
timing, noise effects) in the m selected PCs, as it will determine the
sensitivity to these effects.

Finally, Dp, is also a difference measure, as it is based on the Fourier
transform of the difference between raw data values of two time series
(Lhermitte et al., 2008). Since the FT components were used that express
the majority of the ecosystem periodic variability, the similarity
between D, and the other difference measures is logical. However, as
D uses the FT of the difference, it is specifically sensitive to differences
that result in high Af ~ 9. This occurs, for example, as a result of time
scaling or time translation.

The second group consists of Dy, that measures the difference
between time series, but that also accounts for the temporal cross-
correlations in the data set and non-stationarity of variance. As a
result, it is specifically sensitive towards changes that create large
deviations from the intra-class variability (e.g., the effect of amplitude
shift on LAI data outside the growing season) or from the temporal
cross-correlations in the data set (e.g., time scaling, time translation or
white noise).

The third group consists of D¢ that quantifies the temporal cross-
correlation and does not account for the difference between time
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Fig. 7. lllustration of the effect of a) amplitude scaling, b) amplitude translation, c) time scaling, d) time translation, e) white noise, and f) biased noise on the D/D,c values for the LAI
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series. It is not affected by amplitude effects as they do not affect the between the original and simulated time series values. Consequently,
correlation, but it is highly sensitive to time scaling, time translation the effect of that lag on the correlation can be understood by looking
and noise effects. Both time translation and time scaling create a lag at the serial correlation at different lags (Fig. 4c), which indicates a
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decrease in correlation for increasing lags. The noise, on the other
hand, also results in a decrease correlation, as also shown by
Evrendilek and Gulbeyaz (2008).

The fourth group consist of the Fourier based measures (Dgrr, Dg)
with specific sensitivities. They are completely (D) or relatively (Dgr)
robust to amplitude effects, but highly sensitive to time translation
and scaling, and much more sensitive to noise effects than assumed by
Moody and Johnson (2001), Evans and Geerken (2006), and
Wagenseil and Samimi (2006). For Dgg, the high sensitivity to time
effects and relative robustness to amplitude effects can be explained
by the equal weights for amplitude and phase in Eq. (8). This equation
will be dominated by phase differences between time series, since
phase values differ from —m and m, while the amplitudes for NDVI-EVI
time series only vary between 0 and 1. This is also apparent in the
study of Wagenseil and Samimi (2006), where the variability in phase
values is much higher than for the amplitude values. As a result, Dgris
not affected by small changes in amplitude values due to Wy, and
Wasn, Whereas small changes in phase values due to time translation
result in a abrupt increase. For the LAI time series, on the other hand,
this dominance of phase differences is not as strong, since LAI values
vary between 0 and =+ 5. For D¢, on the other hand, the robustness to
amplitude effects can be explained by its design, whereas the effect of
time scaling on D¢ can be attributed to its defined sensitivity to shape
changes, which resemble time scaling. Although the effect of time
translation is unexpected given D¢s design (Evans & Geerken, 2006), it
can be explained by looking at the differences between time
translation in theory and in reality. In the theoretic definition of
time translation, the observation value that disappears on the right,
reappears on the left (or vice versa). In real ecosystems, however, the
observations at the beginning and end of the time window do not
necessarily correspond and may cause changes the individual FT
components and consequently in Dg.

The high sensitivity of Dgr and D¢ to noise effects stresses the
importance of a proper selection of FT components, as it can be explained
by the decomposition of noise in simpler periodic signals. In this context,
Dgrr and D were defined robust to noise based on the assumption that
noise is only contained in the high frequency Fourier components. This
assumption, however, is not true for white noise and biased noise. White
noise has equal power in any frequency component (Vasseur & Yodzis,
2004) and it tends to influence the similarity measures when the power
of the noise equals the time series signal power. This influence can be
understood by using the additive property of Fourier transform, which
explains how noise components with relative high power result in
arbitrary similarity for Dg-r and Dp, (see Appendix A).

The effect of biased noise on Dgrrand Dy is comparable since biased
low or high values also result in high power in the first Fourier
components. This is illustrated in Fig. 8, where Fig. 8a shows the
original NDVI, EVI, and LAI time series of one LC class, white noise and
biased noise, and Fig. 8b displays amplitude of the first ten Fourier
components. Comparison of these Fourier components in Fig. 8b
shows that Af, still contains a high signal to noise ratio (SNR) for k=1,
but that the SNR is very low and even below one for k=2.
Consequently, the noise for k=2 will influence the similarity
measures Dgsr and Dg, resulting in high sensitivities for increased
noise effects. This sensitivity is specifically strong for the biased noise
in the NDVI time series, as it introduces relatively high power in the
first A components. For the LAI data, on the other hand, the effect of
the introduced biased noise on A and A5 is less pronounced as the
SNR is higher, resulting in smaller increases in Dgsr and D for the LAI
data. The sensitivity of Dgrr and D; to noise effects stresses again the
importance of selecting only FT components with a high SNR. In this
context, the assumption that noise restricted to the high frequency
components is, as shown, not necessarily true and thus the SNR needs
to be considered when selecting the FT components.

Although noise also affects difference measure Dg, its effect is less
pronounced. This can be explained by looking at Eq. (13), where Dg is
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Fig. 8. Example of amplitude of noise in comparison with NDVI, EVI and LAI time series:
a) NDVI, EVI, and LAI time series for a Cropland/Natural Mosaic pixel time series and
noise time series (wyy=0.05 for NDVI-EVI and wyy, = 0.25 for LAI;, wgy =2 for NDVI,
EVI and LAI) in the additive approach; b) amplitude Ai of the first ten Fourier
components of Cropland/Natural Mosaic pixel time series (NDVI, EVI and LAI) and the
mean of the added noise components (WN; Wyise = 0.05 for NDVI-EVI and Wy, = 0.25
for LAIL; BN; wgy =2 for NDVI, EVI and LAI).

dominated by the FT components with high information content. This
implies that, although the power of A%N and A5N equals the power of
A% and A, they will only contribute little to the final Dy when AS ¢
contains little power. This effect is not true for Dgsr where each phase
and amplitude has equal weight on the outcome. Consequently, a low
SNR in one component (e.g., A5) will tend to dominate Dy, although
the overall time series' SNR is not necessarily very low (e.g., when A}
has a high SNR and A{>>AbP). A similar conclusion was drawn by
Mimmack et al. (2001), who discussed the use of standardized PC
scores in similarity assessment, and encountered a dominance of
noise when each component was given equal weight instead of the
weight related to its information content.
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5.2. Importance of knowledge of time series characteristics

The heterogeneity in sensitivity of each D stresses the importance
of understanding the time series characteristics before applying any
classification of change detection approach. This requires knowledge
of the time series characteristics related to baseline, amplitude, timing,
noise of the ecosystem time series and highlights the importance of
preliminary data analysis to understand these. This is also shown in
this quantitative comparison, where the different sensitivities of D for
NDVI, EVI, and LAI can be explained by the temporal characteristics of
each data set. Consequently, it implies that analysis of the individual
time series and their descriptive statistics (i.e., mean/median and
variance over time (Fig. 3), serial correlation (Fig. 4c)) is crucial before
applying any classification or change detection approach, since it will
give insight in the temporal data characteristics. For example, the
mean time series allow an analysis of the phenological cycle and their
differences over time. The variance over time, on the other hand,
permits analysis of the temporal variability in amplitude and timing
effects as (i) variability in amplitude translation affects the variance
over time uniformly, (ii) variability in amplitude scaling increases the
variance for the high value observations and (iii) variability in timing
effects specifically alters the variance in the periods of green-up and
dormancy.

For the transformation based similarity measures it also requires
an analysis of the PCA or FT components before using the transformed
time series. This analysis of PCA or FT components will explicate what
temporal variability will be accounted for. Wagenseil and Samimi
(2006), for example, stressed that the assumption of Fourier analysis
(i.e., the data can be represented by a periodical and sinusoidal signal)
is often not satisfied for the complex shape of NDVI signals, and may
therefore require high frequency terms for suitable approximation. In
this context, Lhermitte et al. (2008) analyzed the contribution of each
FT component in the differenced time series signals in function of the
spatial distance between pixels before applying Dg. Similar analysis is
essential before using Dgr or D¢, since it will provide comprehension
of the relative contribution of amplitude and phase (e.g., understand-
ing the contribution of amplitude and phase values in Eq. (8)) and
avoid hidden dominance of either of both.

Additionally, noise estimation is a crucial step before applying time
series similarity measures as it is crucial to distinguish signals from
the background noise (Mann & Lees, 1996). Hird and McDermid
(2009) in this context warned time series data users to consider both
their ultimate objective and the nature of the noise present in an NDVI
data set when selecting an approach to noise reduction. In this
framework, a number of interesting methods have been proposed that
allow separation of noise from the smoothed phenology signals based
on several fitting (Bradley et al., 2007; Carrao et al., 2010; Chen et al.,
2004; Hermance et al., 2007; Jonsson & Eklundh, 2004; Ma &
Veroustraete, 2006; Roerink et al., 2000) or decomposition method-
ologies (Cihlar et al., 1997; Lu et al., 2007; Verbesselt et al., 2010a) that
sometimes also handle intervals of missing values. Since these
methodologies subsequently allow to quantify the signal to noise
ratio (Bacour et al., 2006; Carrao et al, 2010; Dash et al., 2008;
Evrendilek & Gulbeyaz, 2008; Geerken et al., 2005b) and determine
the statistical properties of the noise (e.g., noise color; Vasseur &
Yodzis, 2004), they also allow to determine the influence of noise on
the D.

Besides, the effect of length of the time series and serial correlation
should seriously be considered when assessing time series similarity.
In our analysis, the serial correlation analysis indicates that NDVI, EVI
and LAI time series show high serial correlation for short observation
intervals (Fig. 4c); especially for the LAI data set with 8-day
observation composites vs. 16-day composites for NDVI and EVI. As
a consequence, the subsequent observations in the time series contain
redundant information, certainly when the evolution of vegetation at
various phenological stages is relatively slow and not related to abrupt

disturbances such as fire, frost, or harvesting. In classification
approaches this redundant information may result in high accuracies
with few observations as demonstrated by Carrao et al. (2008), who
found a sharp increase in classification accuracy for few observation
dates followed be small increases with more observation dates.
Although, the best performance was attained by combining all dates,
the classification accuracy reached already an acceptable rate with
only a few input dates. Nevertheless, fine time scale variations are not
accounted when using fewer temporal inputs (Lambin, 1996) and
may complicate phenological event detection (Zhang et al., 2009).
This was also shown by Lhermitte et al. (2011) and Veraverbeke et al.
(2010) who stressed the importance of high frequent observations to
capture the intra-annual changes due to abrupt disturbances. Analysis
of the serial correlation as performed by Alexandridis et al. (2008) is
therefore essential to determine an appropriate temporal sampling
interval for monitoring vegetation. This is certainly essential when the
cross-correlation similarity between time series is considered, as
Olden and Neff (2001) stressed that serial correlation can inflate
estimates of cross correlation.

5.3. Importance of ecosystem dynamics and knowledge of time series
variability

Besides understanding the time series data characteristics, the
definition of the ecosystem dynamics one want to discriminate is
also crucial in the appropriate selection of D. This choice of
ecosystem dynamics should be driven by the ability to account for
variability at one scale, while identifying differences at another
(Verbesselt et al., 2010a; Verbesselt et al., 2010b). For example, in
classification approaches of ecosystem dynamics, one may be
interested, depending on the application, in using similarity
measures which are specifically sensitive or insensitive to the soil
background, understory vegetation, etc.. In change detection
approaches, on the other hand, one may want to discriminate changes
in vegetation type, without considering phenological changes (e.g.,
onset and timing of phenological events; Evans & Geerken, 2006) or vice
versa (de Beurs & Henebry, 2005).

Before defining the ecosystem dynamics to discriminate the
understanding of the data variability is crucial. In this context, an
analysis of the natural versus changed variability (for change detection
approaches) or intra- versus inter-class variability (for classification
approaches), can provide insights in the dynamics and separability. This
can be done by calculating the overall data variability and trying to
understand the causes of variability (e.g., Julien & Sobrino, 2008;
Linderman et al., 2005) or by using pre-determined groups or classes
and compare their intra- versus inter-class variability. Alternatively,
statistics that express the separability between groups or classes such as
the simple index (Somers et al., 2009; Zhang et al., 2006), the Jeffries-
Matusita distance (Lu & Weng, 2007) or Mahalanobis distance (Carrao
et al, 2008) might serve as an quantitative indicator of separability.
Based on these approaches, the D that maximizes the desired
separability can be selected, for example by comparing these using D/
Dyc. Generally, this selection is a combination of ultimate objective and
the nature of the separability. For example, amplitude sensitive
difference measures might be optimal, when amplitude differences
determine the separability of changed-unchanged or different classes
(e.g. difference between grass land and forest types; Lu et al,, 2003),
whereas correlation based Ds might be better when the separability is
determined by correlation.

6. Case study

As an illustration of the importance of understanding the time series
characteristics related to baseline, amplitude, timing, noise and their
intra- and interclass variability, this sections present a case study based
on LC classification using NDVI, EVI and LAI time series. The goal of this
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case study was not to determine the optimal LC classification approach,
but to demonstrate the importance of understanding the time series
data and their variability as it may affect the performance of each D.

6.1. Methodology

For the LC classification, 500 sample NDVI, EVI, and LAI time series
(2001-2006) per LC type were randomly extracted from the n;c NDVI,
EVI and LAI time series for the northern hemisphere (Section 3.1).

Before classifying these time series, we aimed at understanding the
time series characteristics related to baseline, amplitude, timing, noise
of the ecosystem time series. The aspects related to baseline, amplitude,
timing are already illustrated in Figs. 3-4 and discussed in Sections 3.1-
4.1. To understand the importance of noise on the time series, the
Timesat program was selected to produce temporally smooth estimates
of NDVI, EVI and LAI (Jonsson & Eklundh, 2004). The iterative and
adaptive Savitzky-Golay (SG) filtering method was selected, since it has
been shown to be most effective to minimize overall noise (Hird &
McDermid, 2009). Before applying the SG filter, spurious observations
were identified using the data quality control flags and assigned weights
for the SG filter (w=1 for good quality observations; w=0.5 for
marginal data; w=0 for cloudy data and fill values). Subsequently, the
SG filter was applied using two fitting iterations, a window width of
three months and an adaptation strength of two. These optimal fitting
settings were selected after visual inspection. The result of the Timesat
fitting process can be seen in Fig. 9 which displays the raw and fitted
time series for a Deciduous Broadleaf Forest pixel. For this pixel it is
apparent that the 8-day LAI time series contains more noise than the
16-day NDVI-EVI time series. This is also visible when looking at the FT
amplitudes for components A, of all raw and Timesat fitted time series in
Fig. 10, where the noise time series (i.e., raw time series minus Timesat
fitted time series) contains relatively higher amplitude levels for the LAI
data than for the NDVI-EVI data. It also illustrates the relative
importance of noise for Ay when k>1, where A, contains similar
amplitude values for the noise as for the Timesat fitted NDVI, EVI and LAI
time series. This implies a low signal to noise ratio, which may interfere
with Ay, as discussed in Section 5.

The 500 sample time series of each LC type were subsequently
classified by comparing the pixel's annual time series with the mean
annual time series of each LC type f (t) and assigning the pixel to the
most similar class in a minimum distance classification approach.
Practically, this means g{)éel p's 2000-2001 time series is compared
with each 2000-2001 f(t) and assigned to the most similar LC.
Afterwards, this process is repeated for 2001-2002, etc. This whole
process was performed for both the raw and Timesat fitted time
series.

The eight Ds of Section 3.3 were used in the minimum distance
classification. Additionally, alternative Dz, Dg, and Dj;, were calculated
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Fig. 10. Mean FT amplitudes for components F; of the raw, Timesat fitted, and extracted
noise time series.

which include only the mean and annual component (k=0, 1;
w,=0.5). The comparison of these alternative Djs, D, and Dy with
Drer, De, and D allows to assess the importance of the noise for Fy; k>1.

After the classification, overall accuracy across all classes was
calculated as a measure of classification accuracy. Although this
measure has been criticized as measure of accuracy (Foody, 2002;
Strahler et al.,, 2006), it is a well established community protocol for
classification accuracy and allows to compare the performance of the
Ds in a supervised classification approach (i.e., the class mean time
series for each class are known).

6.2. Results and discussion

Fig. 11 illustrates the effect of each D on the overall classification
accuracy in a minimum distance classifier. For all D, classification
accuracies below 0.5 are obtained, whereas Herold et al. (2008) and
Friedl et al. (2010) obtained in their validation of the MOD12 product
overall accuracies across all classes of 78.3% and 74.8% respectively.
The lower accuracies in this case study, however, are not unlogical as
the original MOD12 LC classification is based on a more sophisticated
ensemble supervised classification algorithm. The ensemble algo-
rithm uses a combination of input time series products in a complex
decision tree and artificial neural network classification algorithm to
assign land cover classes using training data (Friedl et al., 2010).
Additionally, the MOD12 product is post-processed to correct
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Fig. 9. lllustration of the Timesat Savitzky-Golay (SG) filtering method for a NVDI, EVI, and LAI time series for a Deciduous Broadleaf Forest pixel time series. The points (w=1 for
good quality observations, w= 0.5 for marginal data and w =0 for cloudy data and fill values) represent the raw data values, whereas the line represents the temporally smoothed

time series. The difference between both can be attributed due to noise effects.
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Fig. 11. Illustration of the overall classification accuracy when D is used in a minimum
distance classifier approach. Dyan, Dg, Dvan, Dcc, Dpcas Drrrn De, and Dy represent the Ds
of Section 3.3 whereas Dy r,D, and Dy, were calculated using only the mean component
and annual component (k=0, 1; w,=0.5).

classification results for biases and to exploit geographic distribution
information. In this case study, on the other hand, only one data set
was used (NDVI, EVI and LAI respectively), the mean and standard
deviation of f(t) were assumed to typify each LC type, and no post-
processing or geographic corrections were applied. As a result, lower
overall accuracies are not unlogical. However, as our goal was not to
maximize absolute classification accuracy (e.g., by merging confusing
classes in a post-classification approach), the relative accuracy still
allows to determine the relative performance of each D and to
understand the causes of this performance.

From the relative comparison of the Ds, it can be observed that
similarity measures that quantify the difference between time series
(Dman» De, Dpca, Dp) result in the highest accuracies with subtle
differences between each of them. Secondly, the similarity measures
that account for correlation (Dpjan, Dcc) generate much lower
accuracies, where only Dy, results in accuracies above 20% for the
EVI data. This higher accuracy of Dy, for the EVI data is the result of
the EVI intra- and inter-class variance time series illustrated in Fig. 4,
where only EVI data shows a low intra-class variance (IC) and high
inter-class variance during the growing season. Consequently, Dyqp
for the EVI data will be specifically sensitive to inter-class differences
within the growing season, resulting in higher accuracies than for the
NDVI and LAI data that do not have this difference within the growing
season. Thirdly, the Dgrr shows variable results with higher accuracies
for the LAl data than for the NDVI and EVI data. This is due to the phase
dominance for Dgr, which is stronger for the NDVI and EVI data due to
their lower amplitudes values. Comparison of Dgrrand Dirralso shows
that better classification results are obtained for Dger with only the
mean and annual FT components. This can be explained by the equal
weight for all components in Eq. (8), whereas Fig. 10 illustrates that
the Ay values with k>1 contain little information. As a result, Dgr is
influenced strongly by A, and 6, with a low SNR. This effect of
including A, and 6, is not apparent for Dg,. This can be explained by
the fact that only pixels with a high A5 9, which corresponds to a
higher SNR, will significantly contribute to Dg. Fourthly, D¢ and D¢
performs poorly for all data sets, which indicates that solely shape
information, without accounting for baseline and amplitude effects,
cannot explain all variation between LC types. This was also apparent
in Fig. 3, where the clearest distinction between LC types can be made
based on baseline-amplitude information and confirms the work of De
Fries et al. (1998), Hansen et al. (2000), Canisius et al. (2007), and Xia
et al. (2008) who established that baseline-amplitude information
constitutes the basis of the decision tree to discriminate LC types.

Comparison of classification performance between NDVI, EVI, and
LAI data shows in general that LAI data performs best. This can be
explained by (i) looking at the intra- and inter-class variance in Fig. 4,
where the relative difference between intra- and inter-class variance
is high during the whole year for the LAl data in comparison with the
NDVI and EVI data. This implies that the LAI time series are more
separable in this case study.

Moreover, the difference in accuracy between the raw and Timesat
fitted time series reveals the influence of noise on the time series. For
example, the raw EVI and NDVI time series generally perform better
than their fitted counterparts, whereas the opposite can be perceived
for the LAI data where the fitted data perform better than the original
raw data. This difference between EVI, NDVI and LAI data is the result
of their different SNR and the balance between time series integrity
maintenance and noise removal. In this context, Hird and McDermid
(2009) demonstrated that the Timesat SG fitting method is optimal for
noise reduction, but does not always maintain the integrity of the time
series. Moreover, they illustrated that noise reduction can reduce the
quality of the raw time series when noise levels are low. This is also
what happens here, where the NDVI and EVI data contain low noise
levels (Fig. 10). Consequently, the gain of removing noise in the NDVI
and EVI time series cannot counterbalance the loss of integrity, except
for Dprr where the noise in A, strongly affects Dggr. For the LAI data, on
the other hand, the removal of the stronger noise component
effectively compensates for the loss of integrity in the classification,
except for Dpcy on LAI data where the use of PCs already succeeds in
isolating the noise from the raw time series.

Together these results illustrate the importance of understanding
of the time series’ baseline, amplitude, timing, noise and intra- and
interclass variability, as they demonstrate how the classification
accuracy for each D is affected by these. In this case study, for
example, the baseline-amplitude provides more information to
properly classify each LC class than the information related to
correlation or shape alone, whereas the LAl data show a higher intra-
inter-class separability for each LC, but are also more affected by
noise. As a consequence, the difference measures Dyjqp, D, Dpca, and
Dp, outperform the other D, especially for the LAI data, but noise
removal is also more crucial.

7. Conclusion

Since time series similarity measures D play an important role in
several approaches to study ecosystem dynamics based on remote
sensing time series, there is a strong need for a more comprehensive
understanding concerning the existent similarity measures. These
measures range from Minkowksi (Dpqan, and Dg) and Mahalanobis
(Dpan) distance measures, to correlation (D¢c), Principal Component
Analysis (PCA; Dpca) and Fourier based (Dger, Dg, D) similarities. This
understanding is specifically important since many of these similarity
measures serve as underlying decision criterion in several time series
clustering and change detection techniques and choice of the similarity
may affect the final classification and change detection outcome.

This study therefore focused on the quantitative comparison of the
frequently used time series similarity measures D in function of varying
time series and ecosystem characteristics, such as amplitude, timing and
noise effects. This comparison by means of Monte-Carlo simulations
based on subsets of global MODIS Normalized Difference Vegetation
index (NDVI) and Enhanced Vegetation Index (EVI) and Leaf Area Index
(LAI) data revealed four main groups of time series similarity measures
with different sensitivities: (i) Dpjan, Dg, Dpca, and Dg, quantify the
difference between time series, (ii) Dcc assesses the temporal
correlation between time series, (iii) Dy, also quantifies the difference
but specifically accounts for temporal correlation and non-stationarity
of variance, iv) the Fourier based measures Dgsr and D; quantify a
derived similarity based on specific frequency components.
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The first group of difference measures is sensitive to all introduced
effects, but show relatively the highest sensitivity to amplitude effects.
The similar behavior between these four measures can be explained by
the fact that they all are difference measures that quantify the difference
in time series values. Their distinctive features, on the other hand, are
the result of their specific characteristics related to outliers (Dg),
Principal Component selection (Dpcy), or differenced time series (Dgy).
The second (Dpgqn) and third group (Dcc) are highly sensitive to
variations that change the temporal cross-correlation between time
series (e.g., time scaling or translation and noise effects), whereas the
performance of Dy, also depends strongly on the intra- and inter-class
variability. The fourth group of Fourier based measures (Dgsr and D),
finally, show their specific sensitivity based on the selected Fourier
components, where the signal to noise ratio and the balance between
amplitude and phase dominance is of crucial importance.

As a result of these different sensitivities, it is essential to
understand the ecosystem dynamics and time series characteristics
related to baseline, amplitude, timing, noise and variability before
selecting a D. This was illustrated in the quantitative comparison, as
the different sensitivities of D for NDVI, EVI, and LAI data were
obtained which relate specifically to the temporal characteristics of
each data set. Additionally, the importance of understanding the time
series noise and intra- and interclass variability was demonstrated in
a case study based on LC classification, where it was shown how the
time series' baseline, amplitude, timing, noise and intra- and
interclass variability affect the classification accuracy based on D.
Future users of time series similarity measures therefore need to
consider the relation between the (i) ecosystem dynamics to be
classified/ecosystem changes to be detected and (ii) and the time
series characteristics of the data to be used.
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Appendix A

The additive property of Fourier transform implies that addition in
one domain (e.g., time domain) corresponds to addition in the other
domain (e.g., frequency domain) (Bracewell, 2000). The result of
adding noise to the NDVI, EVI, or LAI times series can therefore be
considered as adding the Fourier transform of the noise to the original
Fourier transform of the NDVI, EVI or LAI signal. An example of this
addition is given in Fig. 12. In this illustration, the effect of white
noise is the displacement of the original Fourier components (p and q)
to a new random point on the circle around the original point. The
radius of the circle will depend on the energy of the noise signal

g} (F,g)2 + (Ff{)2 = A5 ~ W, | due to Parseval's relation (Bracewell,
2

00). The displacement of points p and q results in new amplitude
and phase values for each FT component. This new amplitude and
phase will depend on the relative difference between original A} and
A°'s¢, When the original A is high, the effect of the noise will be
small. However, when A} <Ap°*¢, the effect will be large, and the new
amplitude and phase values will change the Dggr and D¢ results. For
example, a complete random phase value is obtained when the
original A} is smaller than the noise level NL (e.g., NL, in Fig. 12). Due
to the unstandardized use of phase values in Eq. (8), the random
phase value will result in arbitrary similarity measure Dpg, even
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Fig. 12. Illustration of noise effects on Fourier components. F; and F;, are amplitudes of
the cosine and sine waves in rectangular notation, while A, and ¢, are the amplitude
and phase in polar notation, respectively. The introduction of random noise causes a
displacement of the original p and q to new arbitrary points on the circle around p and q.
The radius of this circle will depend on the noise level NL. Two different scenarios of
noise levels are plotted to illustrate this effect (NL; and NL,).

when A} <AV for only one k. The effect on Eq. (9) is of the same
order as changes of A} and ¢f will affect D¢ and will transform it into
an arbitrary distance measure, especially when the noise on Af is
exaggerated in further calculations of oy and 6y.

References

Alexandridis, T. K, Gitas, I. Z, & Silleos, N. G. (2008). An estimation of the optimum
temporal resolution for monitoring vegetation condition on a nationwide scale using
MODIS/Terra data. International Journal of Remote Sensing, 29(12), 3589-3607.

Anyamba, A., & Eastman, J. R. (1996). Interannual variability of NDVI over Africa and its
relations to El Nifio/Southern Oscillation. International Journal of Remote Sensing, 17
(13), 2533-2548.

Anyamba, A., Tucker, C. J., & Eastman, J. R. (2001). NDVI anomaly patterns over Africa
during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 21
(10), 1847-1859.

Azzali, S., & Menenti, M. (2000). Mapping vegetation-soil-climate complexes in
southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data.
International Journal of Remote Sensing, 21(5), 973-996.

Bacour, C., Breon, F. M., & Maignan, F. (2006). Normalization of the directional effects in
noaa-avhrr reflectance measurements for an improved monitoring of vegetation
cycles. Remote Sensing of Environment, 102(3-4), 402-413.

Badeck, F. -W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W., Schaber, J., & Sitch, S.
(2004). Responses of spring phenology to climate change. The New Phytologist, 162
(2), 295-309.

Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices.
Remote Sensing Reviews, 13(1), 95-120.

Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., & Tucker, C. J.
(2006). A comparative study of NOAA-AVHRR derived drought indices using
change vector analysis. International Journal of Remote Sensing, 105(1), 9-22.

Beck, P. S. A, Atzberger, C., Heogda, K. A, Johansen, B., & Skidmore, A. K. (2006).
Improved monitoring of vegetation dynamics at very high latitudes: A new method
using MODIS NDVI. Remote Sensing of Environment, 100(3), 321-334.

Bence, J. R. (1995). Analysis of short time series: correcting for autocorrelation. Ecology,
76(2), 628-639.

Benedetti, R., Rossini, P., & Taddei, R. (1994). Vegetation classification in the Middle
Mediterranean area by satellite data. International Journal of Remote Sensing, 13(3),
583-596.

Bergen, K. M., Brown, D. G., Rutherford, J. F., & Gustafson, E. ]. (2005). Change detection
with heterogeneous data using ecoregional stratification, statistical summaries and
a land allocation algorithm. Remote Sensing of Environment, 97(4), 434-446.

Bontemps, S., Bogaert, P., Titeux, N., & Defourny, P. (2008). An object-based change
detection method accounting for temporal dependences in time series with
medium to coarse spatial resolution. Remote Sensing of Environment, 112(6),
3181-3191.

Borak, J. S., Lambin, E. F., & Strahler, A. H. (2000). The use of temporal metrics for land
cover change detection at coarse spatial scales. International Journal of Remote
Sensing, 21(6-7), 1415-1432.



S. Lhermitte et al. / Remote Sensing of Environment 115 (2011) 3129-3152 3149

Bracewell, R. N. (2000). The Fourier transform and its applications (Third edition).
Singapore: McGraw-Hill.

Bradley, B. A., Jacob, R. W., Hermance, J. F., & Mustard, J. F. (2007). A curve fitting
procedure to derive inter-annual phenologies from time series of noisy satellite
NDVI data. Remote Sensing of Environment, 106(2), 137-145.

Bradley, B. A, & Mustard, J. F. (2008). Comparison of phenology trends by land cover
class: A case study in the Great Basin, USA. Global Change Biology, 14(2), 334-346.

Bretherton, C. S., Smith, C., & Wallace, ]. M. (1992). An intercomparison of methods for
finding coupled patterns in climate data. Journal of Climate, 5(6), 541-560.

Brown, J. C., Jepson, W. E., Kastens, J. H., Wardlow, B. D., Lomas, ]. M., & Price, K. P.
(2007). Multitemporal, moderate-spatial-resolution remote sensing of modern
agricultural production and land modification in the Brazilian Amazon. GIScience &
Remote Sensing, 44(2), 117-148.

Brown, M. E., Pinzon, J. E., Didan, K., Morisette, J. T., & Tucker, C. J. (2006). Evaluation of
the consistency of long-term NDVI time series derived from AVHRR, SPOT-
Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Transactions on
Geoscience and Remote Sensing, 44(7), 1787-1793.

Bruzzone, L., Smits, P. C., & Tilton, J. C. (2003). Foreword special issue an analysis of
multitemporal remote sensing images. I[EEE Transactions on Geoscience and Remote
Sensing, 41(10), 2419-2420.

Buermann, W., Anderson, B., Tucker, C. J., Dickinson, R. E., Lucht, W., Potter, C. S., &
Myneni, R. B. (2003). Interannual covariability in Northern Hemisphere air
temperatures and greenness associated with El Nino-Southern Oscillation and
the Arctic Oscillation. Journal of Geophysical Research, 108(D13). doi:10.1029/
2002]D002630.

Canisius, F., Turral, H., & Molden, D. (2007). Fourier analysis of historical NOAA time
series data to estimate bimodal agriculture. International Journal of Remote Sensing,
28(24), 5503-5522.

Carlson, T., & Ripley, D. (1997). On the relation between NDVI, fractional vegetation
cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252.

Carrao, H., Goncalves, P., & Caetano, M. (2008). Contribution of multispectral and
multitemporal information from MODIS images to land cover classification. Remote
Sensing of Environment, 112(3), 986-997.

Carrao, H., Goncalves, P., & Caetano, M. (2010). A nonlinear harmonic model for fitting
satellite image time series: Analysis and prediction of land cover dynamics. IEEE
Transactions on Geoscience and Remote Sensing, 48(4), 1919-1930.

Castro, C. L, Beltran-Przekurat, A. B., & Pielke, R. A. (2009). Spatiotemporal variability of
precipitation, modeled soil moisture, and vegetation greenness in North America within
the recent observational record. Journal of Hydrometeorology, 10(6), 1355-1378.

Chen, J. M,, Jonsson, P., Tamura, M., Gu, Z. H., Matsushita, B., & Eklundh, L. (2004). A
simple method for reconstructing a high-quality NDVI time-series data set based
on the Savitzky-Golay filter. Remote Sensing of Environment, 91(3-4), 332-344.

Cihlar, J,, Ly, H,, Li, Z. Q., Chen, J., Pokrant, H., & Huang, F. T. (1997). Multitemporal,
multichannel AVHRR data sets for land biosphere studies — Artifacts and
corrections. Remote Sensing of Environment, 60(1), 35-57.

Cihlar, J., Manak, D., & D'lorio, M. (1994). Evaluation of compositing algorithms for
AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 32(2),
427-437.

Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of remote
sensing. Bioscience, 54(6), 535-545.

Coops, N. C., Wulder, M. A., & Iwanicka, D. (2009). Demonstration of a satellite-
based index to monitor habitat at continental-scales. Ecological Indicators, 9(5),
948-958.

Coppin, P., Jonckheere, 1., Lambin, E., Nackaerts, K., & Muys, B. (2004). Digital change
detection methods in ecosystem monitoring: A review. International Journal of
Remote Sensing, 25(9), 1565-1596.

Courault, D., Bsaibes, A., Kpemlie, E., Hadria, R., Hagolle, O., Marloie, O., Hanocq, J. -F.,
Olioso, A., Bertrand, N., & Desfonds, V. (2008). Assessing the potentialities of
FORMOSAT-2 data for water and crop monitoring at small regional scale in South-
Eastern France. Sensors, 8(5), 3460-3481.

Dash, J., Jeganathan, C., & Atkinson, P. M. (2010). The use of MERIS Terrestrial
Chlorophyll Index to study spatio-temporal variation in vegetation phenology over
India. Remote Sensing of Environment, 114(7), 1388-1402.

Dash, J., Lankester, T., Hubbard, S., & Curran, P. J. (2008). Signal-to-noise ratio for MTCI
and NDVI time series data. In H. Lacoste, & L. Ouwehand (Eds.), Proceedings of the
2nd MERIS/(A)ATSR User Workshop Frascati, Italy.

Dash, J., Mathur, A, Foody, G. M., Curran, P.]., Chipman, J. W., & Lillesand, T. M. (2007). Land
cover classification using multi-temporal MERIS vegetation indices. International
Journal of Remote Sensing, 28(6), 1137-1159.

Davis, A,, Marshak, A., Wiscombe, W., & Cahalan, R. (1994). Multifractal characterizations
of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or
simulated. Geophysical Research Letters, 99(D4), 8055-8072.

de Beurs, K. M., & Henebry, G. M. (2005). A statistical framework for the analysis of long
image time series. International Journal of Remote Sensing, 26(8), 1551-1573.

De Fries, R. S., Hansen, M., Townshend, J. R. G., & Sohlberg, R. (1998). Global land cover
classifications at 8 km spatial resolution: The use of training data derived from
Landsat imagery in decision tree classifiers. International Journal of Remote Sensing,
19(16), 3141-3168.

Defries, R. S., Hansen, M. C., & Townshend, J. R. G. (1995). Global discrimination of land
cover types from metrics derived from AVHRR pathfinder data. Remote Sensing of
Environment, 54(3), 209-222.

Defries, R. S., & Townshend, ]. R. G. (1994). NDVI-derived landcover classifications at a
global scale. International Journal of Remote Sensing, 15(17), 3567-3586.

Duchemin, B., Goubier, J., & Courrier, G. (1999). Monitoring phenological key stages and
cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data.
Remote Sensing of Environment, 167(1), 68-82.

Duchemin, B., Hagolle, O., Mougenot, B., Benhadj, 1., Hadria, R., Simonneaux, V., Ezzahar,
J., Hoedjes, J., Khabba, S., Kharrou, M. H., Boulet, G., Dedieu, G., Er-Raki, S., Escadafal,
R., Olioso, A., & Chehbouni, A. G. (2008). Agrometerological study of semi-arid
areas: An experiment for analysing the potential of time series of FORMOSAT-2
images (Tensift—-Marrakech plain). International Journal of Remote Sensing, 29(17-18),
5291-5300.

Eastman, J. R, & Fulk, M. (1993). Long sequence time series evaluation using
standardized principal components. Photogrammetric Engineering and Remote
Sensing, 59(8), 1307-1312.

Ehrlich, D., & Lambin, E. F. (1996). Broad-scale land-cover classification and
interannual climatic variability. International Journal of Remote Sensing, 17(5),
845-862.

Eklundh, L., & Olsson, L. (2003). Vegetation index trends for the African Sahel 1982-1999.
Geophysical Research Letters, 8. doi:10.1029/2002GL016772.

Evans, ]. P., & Geerken, R. (2006). Classifying rangeland vegetation type and coverage
using a Fourier component based similarity measure. Remote Sensing of Environment,
105(1),1-8.

Evrendilek, F., & Gulbeyaz, O. (2008). Deriving vegetation dynamics of natural
terrestrial ecosystems from MODIS NDVI/EVI Data over Turkey. Sensors, 8(9),
5270-5302.

Fensholt, R., Nielsen, T. T., & Stisen, S. (2006). Evaluation of AVHRR PAL and
GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation
data for the African continent. International Journal of Remote Sensing, 27(13),
2719-2733.

Fensholt, R., Sandholt, 1., & Rasmussen, M. S. (2004). Evaluation of MODIS LAI, fAPAR
and the relation between fAPAR and NDVI in a semi-arid environment using in situ
measurements. Remote Sensing of Environment, 91(3-4), 480-507.

Fischlin, A., Midgley, G., Price, ]., Leemans, R., Gopal, B., Turley, C., Rounsevell, M., Dube,
0., Tarazona, J., & Velichko, A. (2007). Ecosystems, their properties, goods, and
services. In M. Parry, O. Canziani, ]. Palutikof, P. van der Linden, & C. Hanson (Eds.),
Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working
Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change (pp. 211-272). Cambridge: Cambridge University Press.

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote
Sensing of Environment, 80(1), 185-201.

Fovell, R. G., & Fovell, M. C. (1993). Climate zones of the conterminous United States
defined using cluster-analysis. Journal of Climate, 6(11), 2103-2135.

Friedl, M. A., Mclver, D. K., Hodges, ]J. C.,, Zhang, X. Y., Muchoney, D., Strahler, A. H.,
Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., & Schaaf, C.
(2002). Global land cover mapping from MODIS: Algorithms and early results.
Remote Sensing of Environment, 83(1-2), 287-302.

Friedl, M. A, Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., &
Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements
and characterization of new datasets. Remote Sensing of Environment, 114(1),
168-182.

Gao, F., Morisette, . T., Wolfe, R. E., Ederer, G., Pedelty, ]., Masuoka, E., Myneni, R., Tan, B.,
& Nightingale, J. (2008). An algorithm to produce temporally and spatially
continuous MODIS-LAI time series. IEEE Geoscience and Remote Sensing Letters, 5
(1), 60-64.

Geerken, R., Batikha, N., Celis, D., & Depauw, E. (2005a). Differentiation of rangeland
vegetation and assessment of its status: Field investigations and MODIS and SPOT
VEGETATION data analyses. International Journal of Remote Sensing, 26(20),
4499-4526.

Geerken, R, Zaitchik, B., & Evans, ]. P. (2005b). Classifying rangeland vegetation type
and fractional cover of semi-arid and arid vegetation covers from NDVI time-series.
International Journal of Remote Sensing, 26(24), 5535-5554.

Glenn, E. P, Huete, A. R, Nagler, P. L., & Nelson, S. G. (2008). Relationship between
remotely-sensed vegetation indices, canopy attributes and plant physiological
processes: What vegetation indices can and cannot tell us about the landscape.
Sensors, 8(4), 2136-2160.

Gong, D.Y.,&Ho, C. H. (2003). Detection of large-scale climate signals in spring vegetation
index (Normalized Difference Vegetation Index) over the Northern Hemisphere.
Journal of Geophysical Research, 108(D16, 4498). doi:10.1029/2002JD002300.

Gong, X., & Richman, M. B. (1995). On the application of cluster-analysis to growing-
season precipitation data in North America east of the rockies. Journal of Climate, 8
(4), 897-931.

Gong, D. Y., & Shi, P. J. (2003). Northern hemispheric NDVI variations associated with
large-scale climate indices in spring. International Journal of Remote Sensing, 24(12),
2559-2566.

Gong, D.-Y., & Shi, P. -J. (2004). Inter-annual changes in eurasian continent NDVI and its
sensitivity to the large-scale climate variations in the last 20 years. Acta Botanica
Sinica, 46(2), 186-193.

Granger, C. W. ]., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of
Econometrics, 2(2), 111-120.

Gurgel, H. C,, & Fereira, N.]. (2003). Annual and interannual variability of NDVI in Brazil
and its connections with climate. International Journal of Remote Sensing, 24(18),
3595-36009.

Hadria, R., Duchemin, B., Jarlan, L., Dedieu, G., Baup, F., Khabba, S., Olioso, A., & Le Toan,
T. (2010). Potentiality of optical and radar satellite data at high spatio-temporal
resolutions for the monitoring of irrigated wheat crops in Morocco. International
Journal of Applied Earth Observation and Geoinformation, 12, S32-S37.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation
techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145.

Hall-Beyer, M. (2003). Comparison of single-year and multiyear NDVI time series
principal components in cold temperate biomes. IEEE Transactions on Geoscience
and Remote Sensing, 41(11), 2568-2574.


http://dx.doi.org/10.1029/2002JD002630
http://dx.doi.org/10.1029/2002JD002630
http://dx.doi.org/10.1029/2002GL016772
http://dx.doi.org/10.1029/2002JD002300

3150 S. Lhermitte et al. / Remote Sensing of Environment 115 (2011) 3129-3152

Hansen, M. C,, DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., & Sohlberg, R. A.
(2003). Global percent tree cover at a spatial resolution of 500 meters: First results
of the MODIS vegetation continuous fields algorithm. Ecological Interactions, 7(10),
1-15.

Hansen, M. C,, Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover
classification at 1km spatial resolution using a classification tree approach.
International Journal of Remote Sensing, 21(6-7), 1331-1364.

Hermance, J. F, Jacob, R. W, Bradley, B. A, & Mustard, ]. F. (2007). Extracting
phenological signals from multiyear AVHRR NDVI time series: Framework for
applying high-order annual splines with roughness damping. IEEE Transactions on
Geoscience and Remote Sensing, 45(10), 3264-3276.

Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., & Schmullius, C. (2008). Some
challenges in global land cover mapping: An assessment of agreement and accuracy
in existing 1 km datasets. Remote Sensing of Environment, 112(2), 2538-2556.

Herrmann, S. M., Anyamba, A., & Tucker, C. ]. (2005). Recent trends in vegetation
dynamics in the African Sahel and their relationship to climate. Global Environmental
Change, 15, 394-404.

Heumann, B. W.,, Seaquist, ]. W., Eklundh, L., & Jonsson, P. (2007). AVHRR derived
phenological change in the Sahel and Soudan, Africa, 1982-2005. Remote Sensing of
Environment, 108(4), 385-392.

Hill, M. J., & Donald, G. E. (2003). Estimating spatio-temporal patterns of agricultural
productivity in fragmented landscapes using AVHRR NDVI time series. Remote
Sensing of Environment, 84(3), 367-384.

Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical
comparison of selected techniques. Remote Sensing of Environment, 113(1),
248-258.

Hirosawa, Y., Marsh, S. E., & Kliman, D. H. (1996). Application of standardized principal
component analysis to land-cover characterization using multitemporal AVHRR
data. Remote Sensing of Environment, 58(3), 267-281.

Holben, B. N. (1986). Characterization of maximum value composites from temporal
AVHRR data. International Journal of Remote Sensing, 7(11), 1417-1434.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6), 417-441.

Huang, S., & Sieger, F. (2006). Land cover classification optimized to detect areas at risk
of desertification in North China based on SPOT VEGETATION imagery. Journal of
Arid Environments, 67(2), 308-327.

Huemmirich, K. F., Privette, ]. L., Mukelabai, M., Myneni, R. B., & Knyazikhin, Y. (2005).
Time-series validation of MODIS land biophysical products in a Kalahari woodland,
Africa. International Journal of Remote Sensing, 26(19), 4381-4398.

Huete, A,, Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview
of the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sensing of Environment, 83(1-2), 195-213.

Huete, A. R, Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of
vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of
Environment, 59(3), 440-451.

Jackson, J. E. (1991). A user's guide to principal components. New York: John Wiley &
Sons, Inc.

Jacquin, A., Sheeren, D. & Lacombe, ]J. -P. (2010). Vegetation cover degradation
assessment in Madagascar savanna based on trend analysis of MODIS NDVI time
series. International Journal of Applied Earth Observation and Geoinformation, 12,
S3-S10.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing
Surveys, 31(3), 264-323.

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2002). Crop identification using
harmonic analysis of time series AVHRR NDVI data. Computers and Electronics in
Agriculture, 37(1-3), 127-139.

Jiang, B., Liang, S., Wang, ]., & Xiao, Z. (2010). Modeling MODIS LAI time series using
three statistical methods. Remote Sensing of Environment, 114(7), 1432-1444.

Jin, S., & Sader, S. A. (2005). MODIS time-series imagery for forest disturbance detection
and quantification of patch size effects. Remote Sensing of Environment, 99(4),
462-470.

Jolliffe, 1. T. (2002). Principal component analysis. New York: Springer.

Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-
series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing,
40(8), 1824-1832.

Jonsson, P., & Eklundh, L. (2004). TIMESAT — A program for analyzing time-series of
satellite sensor data. Computers and Geosciences, 30(8), 833-845.

Ju,J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM plus data over the
conterminous United States and globally. Remote Sensing of Environment, 112(3),
1196-1211.

Ju,].,Roy, D. P., Shuai, Y., & Schaaf, C. (2010). Development of an approach for generation of
temporally complete daily nadir MODIS reflectance time series. Remote Sensing of
Environment, 114(1), 1-20.

Julien & Sobrino (2008). NDVI seasonal amplitude and its variability. International
Journal of Remote Sensing, 29(17), 4887-4888.

Julien, Y., & Sobrino, J. A. (2009). Comparison of cloud-reconstruction methods for time
series of composite NDVI data. Remote Sensing of Environment, 114(3), 618-625.

Julien, Y., & Sobrino, ]. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: An
analysis of global vegetation from NDVI and LST parameters. Remote Sensing of
Environment, 13(2), 329-334.

Justice, C., & Hiernaux, P. (1986). Monitoring grasslands of the Sahel using NOAA
AVHRR data: Niger 1983. International Journal of Remote Sensing, 7(11),
1475-1497.

Kang, S., Running, S. W., Zhao, M., Kimball, J. S., & Glassy, J. (2005). Improving continuity
of MODIS terrestrial photosynthesis products using an interpolation scheme for
cloudy pixels. International Journal of Remote Sensing, 26(8), 1659-1676.

Kerr, J., & Ostrovsky, M. (2003). From space to species: Ecological applications for
remote sensing. Trends in Ecology & Evolution, 18(6), 299-305.

Knudby, A., Newman, C, Shaghude, Y., & Muhando, C. (2010). Simple and effective
monitoring of historic changes in nearshore environments using the free archive of
Landsat imagery. International Journal of Applied Earth Observation and Geoinformation,
12,5116-5122.

Lambin, E. F. (1996). Change detection at multiple temporal scales: Seasonal and annual
variations in landscape variables. Photogrammetric Engineering and Remote Sensing,
62(8), 931-938.

Lambin, E. F,, & Ehrlich, D. (1997). Land-cover changes in sub-Saharan Africa (1982-1991):
Application of a change index based on remotely sensed surface temperature and
vegetation indices at a continental scale. Remote Sensing of Environment, 61(2),
181-200.

Lambin, E. F,, & Strahler, A. H. (1994). Change-vector analysis in multitemporal space — A
tool to detect and categorize land-cover change processes using high temporal-
resolution satellite data. Remote Sensing of Environment, 48(2), 231-244.

Latifovic, R., Cihlar, J., & Chen, J. (2003). A comparison of BRDF models for the
normalization of satellite optical data to a standard sun-target-sensor geometry.
IEEE Transactions on Geoscience and Remote Sensing, 41(8), 1889-1898.

Lawrence, R. L., & Ripple, W. J. (1999). Calculating change curves for multitemporal
satellite imagery: Mount St. Helens 1980-1995. Remote Sensing of Environment, 67
(3),309-319.

Lhermitte, S., Verbesselt, J., Jonckheere, ]., van Aardt, J. A. N., Nackaerts, K., Verstraeten,
W. W., & Coppin, P. (2008). Hierarchical image segmentation based on similarity of
NDVI time series. Remote Sensing of Environment, 112(2), 506-521.

Lhermitte, S., Verbesselt, J., Verstraeten, W. W., & Coppin, P. (2010). A pixel based
regeneration index using time series similarity and spatial context. Photogrammetric
Engineering and Remote Sensing, 76(6), 673-682.

Lhermitte, S., Verbesselt, J., Verstraeten, W. W., Veraverbeke, S., & Coppin, P. (2011).
Assessing intra-annual vegetation regrowth after fire using the pixel based
regeneration index. ISPRS Journal of Photogrammetry and Remote Sensing, 66,
17-27.

Liao, T. (2005). Clustering of time series data — A survey. Pattern Recognition, 38(11),
1857-1874.

Lin, Z. Q,, & Brannigan, A. (2003). Advances in the analysis of non-stationary time series:
An illustration of cointegration and error correction methods in research on crime
and immigration. Quality and Quantity, 37(2), 151-168.

Linderman, M., Rowhani, P., Benz, D., Serneels, S., & Lambin, E. (2005). Land-cover
change and vegetation dynamics across Africa. Journal of Geophysical Research, 110
(D12104). doi:10.1029/2004JD005521.

Lloyd, D. (1990). A phenological classification of terrestrial vegetation cover using
shortwave vegetation index imagery. International Journal of Remote Sensing, 11
(12), 2269-2279.

Lobo, A., & Maisongrande, P. (2008). Searching for trends of change through
exploratory data analysis of time series of remotely sensed images of SW Europe
and NW Africa. Int ] Remote Sens (2008) vol. 29 (17) pp. 5237-5245. International
Journal of Remote Sensing, 29(17-18), 5237-5245.

Los, S. 0., Collatz, G. J., Bounoua, L., Sellers, P. ., & Tucker, C.]. (2001). Global interannual
variations in sea surface temperature and land surface vegetation, air temperature,
and precipitation. Journal of Climate, 14(7), 1535-1549.

Lotsch, A, Friedl, M. A, Anderson, B. T., & Tucker, C. . (2003). Coupled vegetation—
precipitation variability observed from satellite and climate records. Geophysical
Research Letters, 30(14). doi:10.1029/2003GL017506.

Loveland, T. R., Merchant, J. W., Brown, ]. F., Ohlen, D. O., Reed, B. C, Olson, P., &
Hutchinson, J. (1995). Seasonal land-cover regions of the united states. Annals of the
Association of American Geographers, 85, 339-355.

Loveland, T. R, Reed, B. C,, Brown, ]. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W.
(2000). Development of a global land cover characteristics database and IGBP
DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6-7),
1303-1330.

Lu, X,, Liu, R, Liu, J,, & Liang, S. (2007). Removal of noise by wavelet method to generate
high quality temporal data of terrestrial MODIS products. Photogrammetric
Engineering and Remote Sensing, 73(10), 1129-1139.

Lu, D., Mausel, P., Brondizio, E., & Mora, E. (2003). Change detection techniques.
International Journal of Remote Sensing, 25(12), 2365-2407.

Lu, H., Raupach, M. R, McVicar, T.R., & Barrett, D. ]. (2003). Decomposition of vegetation
cover into woody and herbaceous components using AVHRR NDVI time series.
Remote Sensing of Environment, 86(1), 1-18.

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for
improving classification performance. International Journal of Remote Sensing, 28
(5), 823-870.

Lucht, W., & Lewis, P. (2000). Theoretical noise sensitivity of BRDF and albedo retrieval
from the EOS-MODIS and MISR sensors with respect to angular sampling.
International Journal of Remote Sensing, 21(1), 81-98.

Ma, M. G., & Veroustraete, F. (2006). Reconstructing pathfinder AVHRR land NDVI
time-series data for the Northwest of China. Advances in Space Research, 37(4),
835-840.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Science in India, 2(1), 49-55.

Mann, M. E., & Lees, ]. M. (1996). Robust estimation of background noise and signal
detection in climatic time series. Climatic Change, 33(3), 409-445.

Mantua, N. (2004). Methods for detecting regime shifts in large marine ecosystems: A
review with approaches applied to North Pacific data. Progress in Oceanography, 60
(2-4), 165-182.

Mas, J. F. (1999). Monitoring land-cover changes: A comparison of change detection
techniques. International Journal of Remote Sensing, 20(1), 139-152.


http://dx.doi.org/10.1029/2004JD005521
http://dx.doi.org/10.1029/2003GL017506

S. Lhermitte et al. / Remote Sensing of Environment 115 (2011) 3129-3152 3151

Matricardi, E. A., Skole, D. L., Pedlowski, M. A., Chomentowski, W., & Fernandes, L. C.
(2010). Assessment of tropical forest degradation by selective logging and fire
using Landsat imagery. Remote Sensing of Environment, 114(5), 1117-1129.

Meek, D. W., Prueger, ]. H,, Sauer, T. ., Kustas, W. P., Hipps, L. E., & Hatfield, ]. L. (1999). A
note on recognizing autocorrelation and using autoregression. Agricultural and
Forest Meteorology, 96(1-3), 9-17.

Mimmack, G. M., Mason, S.]J., & Galpin, J. S. (2001). Choice of distance matrices in cluster
analysis: Defining regions. Journal of Climate, 14(12), 2790-2797.

Moody, A., & Johnson, D. M. (2001). Land-surface phenologies from AVHRR using the
discrete Fourier transform. Remote Sensing of Environment, 75(3), 305-323.

Myneni, R. B., Keeling, C. D., Tucker, C. J,, Asrar, G., & Nemani, R. R. (1997). Increased
plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626),
698-702.

Nezlin, N. P., Kostianoy, A. G., & Li, B. (2005). Inter-annual variability and interaction of
remote-sensed vegetation index and atmospheric precipitation in the Aral Sea
region. Journal of Arid Environments, 62(4), 677-700.

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) (2010).
MODIS subsetted land products, Collection 5. Available on-line. http://daac.ornl.
gov/MODIS/modis.html from ORNL DAAC, Oak Ridge, Tennessee, U.S.A. Accessed
Month 07, 2010

Olden, ]., & Neff, B. (2001). Cross-correlation bias in lag analysis of aquatic time series.
Marine Biology, 138(5), 1063-1070.

Olthof, I., Pouliot, D., Latifovic, R., & Chen, W. (2008). Recent (1986-2006) vegetation-
specific NDVI trends in Northern Canada from satellite data. Arctic, 3(61),
381-394.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6), 559-572.

Pettorelli, N., Vik, J., Mysterud, A., Gaillard, J., Tucker, C., & Stenseth, N. (2005). Using the
satellite-derived NDVI to assess ecological responses to environmental change.
Trends in Ecology & Evolution, 20(9), 503-510.

Potter, C. S., & Brooks, V. (1998). Global analysis of empirical relations between annual
climate and seasonality of NDVI. International Journal of Remote Sensing, 19(15),
2921-2948.

Prasad, A. K., Sarkar, S., Singh, R. P., & Kafatos, M. (2007). Inter-annual variability of
vegetation cover and rainfall over India. Advances in Space Research, 39(1),
79-87.

Reed, B. C., Brown, J. F,, Vanderzee, D., Loveland, T. S., Merchant, ]. W., & Ohlen, D. O.
(1994). Measuring phenological variability from satellite imagery. Journal of
Vegetation Science, 5(5), 703-714.

Ricotta, C.,, Avena, G., & De Palma, A. (1999). Mapping and monitoring net primary
productivity with AVHRR NDVI time-series: Statistical equivalence of cumulative
vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 54(5-6),
325-331.

Roder, A., Hill, J., Duguy, B., Alloza, ]. A., & Vallejo, R. (2008). Using long time series of
Landsat data to monitor fire events and post-fire dynamics and identify driving
factors. A case study in the Ayora region (eastern Spain). Remote Sensing of
Environment, 112(1), 259-273.

Raoder, A., Udelhoven, T., Hill, ], del Barrio, G., & Tsiourlis, G. (2008). Trend analysis of Landsat-
TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern
Greece. Remote Sensing of Environment, 112(6), 2863-2875.

Rodgers, ]. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation
coefficient. The American Statistician, 42(1), 59-66.

Roerink, G. J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloudfree NDVI
composites using Fourier analysis of time series. International Journal of Remote
Sensing, 21(9), 1911-1917.

Running, S. W., Nemani, R. R,, Heinsch, F. A,, Zhao, M. S., Reeves, M., & Hashimoto, H.
(2004). A continuous satellite-derived measure of global terrestrial primary
production. Bioscience, 54(6), 547-560.

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H.
(2005). A crop phenology detection method using time-series MODIS data. Remote
Sensing of Environment, 96(3-4), 366-374.

Samson, S. A. (1993). Two indices to characterize temporal patterns in the spectral
response of vegetation. Photogrammetric Engineering and Remote Sensing, 59(4),
511-517.

Sarkar, S., & Kafatos, M. (2004). Interannual variability of vegetation over the Indian
sub-continent and its relation to the different meteorological parameters. Remote
Sensing of Environment, 90(2), 268-280.

Seiler, R., Kogan, F., Wei, G., & Vinocur, M. (2007). Seasonal and interannual responses
of the vegetation and production of crops in Cordoba, Argentina assessed by AVHRR
derived vegetation indices. Advances in Space Research, 39(1), 88-94.

Serneels, S., Linderman, M., & Lambin, E. F. (2007). A multilevel analysis of the impact of
land use on interannual land-cover change in East Africa. Ecosystems, 10(3),
402-418.

Simoniello, T., Lanfredi, M., Liberti, M., Coppola, R., & Macchiato, M. (2008). Estimation
of vegetation cover resilience from satellite time series. Hydrology and Earth System
Sciences, 12(4), 1053-1064.

Simonneaux, V., Duchemin, B., Helson, D., Er-Raki, S., Olioso, A., & Chehbouni, A. G.
(2008). The use of high-resolution image time series for crop classification and
evapotranspiration estimate over an irrigated area in central Morocco. International
Journal of Remote Sensing, 29(1), 95-116.

Singh, A. (1989). Digital change detection techniques using remotely-sensed data.
International Journal of Remote Sensing, 10(6), 989-1003.

Somers, B., Delalieux, S., Stuckens, ]., Verstraeten, W. W., & Coppin, P. (2009). A
weighted linear spectral mixture analysis approach to address endmember variability
in agricultural production systems. International Journal of Remote Sensing, 30(1),
139-147.

Soria, G., & Sobrino, J. A. (2007). ENVISAT/AATSR derived land surface temperature over
a heterogeneous region. Remote Sensing of Environment, 111(4), 409-422.

Soudani, K., le Maire, G., Dufrene, E., Francois, C., Delpierre, N., Ulrich, E., & Cecchini, S.
(2008). Evaluation of the onset of green-up in temperate deciduous broadleaf
forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS)
data. Remote Sensing of Environment, 112(5), 2643-2655.

Strahler, A. H., Boschetti, L., Foody, G. M., Friedl, M. A., Hansen, M. C., Herold, M.,
Mayaux, P., Morisette, J. T., Stehman, S. V., & Woodcock, C. E. (2006). Global Land
Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global
Land Cover Maps. GOFC-GOLD Report No. 25. Luxemburg: Office for Official
Publications of the European Communities.

Studer, S., Stockli, R., Appenzeller, C., & Vidale, P. L. (2007). A comparative study of
satellite and ground-based phenology. International Journal of Biometeorology, 51
(5), 405-414.

Thenkabail, P. S., Enclona, E. A, Ashton, M. S., Legg, C., & De Dieu, M. J. (2004). Hyperion,
IKONOS, AL, and ETM+ sensors in the study of African rainforests. Remote Sensing
of Environment, 90(1), 23-43.

Tippett, M. K., DelSole, T., Mason, S. ]., & Barnston, A. G. (2008). Regression-based
methods for finding coupled patterns. Journal of Climate, 21(17), 4384-4398.
Tottrup, C., & Rasmussen, M. S. (2004). Mapping long-term changes in savannah crop
productivity in Senegal through trend analysis of time series of remote sensing

data. Agriculture, Ecosystems and Environment, 103(3), 545-560.

Turner, B. L., Lambin, E., & Reenberg, A. (2007). The emergence of land change science
for global environmental change and sustainability. Proceedings of the National
Academy of Sciences of the United States of America, 104(52), 20666-20671.

Van der Meer, F., & Bakker, W. (1997). CCSM: Cross correlogram spectral matching.
International Journal of Remote Sensing, 18(5), 1197-1201.

Vanacker, V., Linderman, M., Lupo, F., Flasse, S., & Lambin, E. (2005). Impact of short-
term rainfall fluctuation on interannual land cover change in sub-Saharan Africa.
Global Ecology and Biogeography, 14(2), 123-135.

Vasseur, D. A, & Yodzis, P. (2004). The color of environmental noise. Ecology, 85(4),
1146-1152.

Veraverbeke, S., Lhermitte, S., Verstraeten, W. W., & Goossens, R. (2010). The temporal
dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies:
The case of the large 2007 Peloponnese wildfires in Greece. Remote Sensing of
Environment, 114(11), 2548-2563.

Verbesselt, ]., Hyndman, R., Newnham, G., & Culvenor, D. (2010a). Detecting trend and
seasonal changes in satellite image time series. Remote Sensing of Environment, 114
(1), 106-115.

Verbesselt, J., Hyndman, R., Zeileis, A., & Culvenor, D. (2010b). Phenological change
detection while accounting for abrupt and gradual trends in satellite image time
series. Remote Sensing of Environment, 114(12), 2970-2980.

Verbesselt, J., Jonsson, P., Lhermitte, S., Jonckheere, 1., van Aardt, J., & Coppin, P. (2006).
Relating time-series of meteorological and remote sensing indices to monitor
vegetation moisture dynamics. In C. Chen (Ed.), Signal and image processing for
remote sensing (pp. 153-173). University of Massachusetts, North Darthmouth,
USA: CRC Press.

Verbesselt, J., Jonsson, P., Lhermitte, S., van Aardyt, J., & Coppin, P. (2006). Evaluating indices
derived from satellite and climate data as fire risk indicators in savanna ecosystems. [EEE
Transactions on Geoscience and Remote Sensing, 44(6), 1622-1632.

Verbesselt, ]., Robinson, A., Stone, C., & Culvenor, D. (2009). Forecasting tree mortality
using change metrics derived from MODIS satellite data. Forest Ecology and
Management, 258(7), 1166-1173.

Verbesselt, ]., Somers, B., Lhermitte, S., Jonckheere, ., van Aardt, ]., & Coppin, P. (2007).
Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series
for fire risk prediction in savanna ecosystems. Remote Sensing of Environment, 108
(4), 357-368.

Vermote, E., Justice, C. O., & Breon, F. -M. (2009). Towards a generalized approach for
correction of the BRDF effect in MODIS directional reflectances. [EEE Transactions on
Geoscience and Remote Sensing, 47(3), 898-908.

Verstraeten, W. W., Veroustraete, F., Wagner, W., Van Roey, T., Heyns, W., Verbeiren, S.,
& Feyen, J. (2010). Impact assessment of remotely sensed soil moisture on
ecosystem carbon fluxes across Europe. Climatic Change, 103, 117-136.

Viovy, N. (2000). Automatic Classification of Time Series (ACTS): A new clustering
method for remote sensing time series. International Journal of Remote Sensing, 21
(6-7), 1537-1560.

Viovy, N., Arinoa, O., & Belward, A. S. (1992). The Best Index Slope Extraction (BISE): A
method for reducing noise in NDVI time-series. International Journal of Remote
Sensing, 13(8), 1585-1590.

Vogelmann, J. E., & DeFelice, T. P. (2003). Characterization of intra-annual reflectance
properties of land cover classes in southeastern South Dakota using Landsat TM and
ETM+ data. Canadian Journal of Remote Sensing, 29(2), 219-229.

Wagenseil, H., & Samimi, C. (2006). Assessing spatio-temporal variations in plant
phenology using Fourier analysis on NDVI time series: Results from a dry savannah
environment in Namibia. International Journal of Remote Sensing, 16(20),
3455-3471.

Wang, Q,, Adiku, S, Tenhunen, J., & Granier, A. (2005). On the relationship of NDVI with leaf
area index in a deciduous forest site. Remote Sensing of Environment, 94(2), 244-255.

Wang, L., Chen, J., Gong, P., Shimazaki, H., & Tamura, M. (2009). Land cover change
detection with a cross-correlogram spectral matching algorithm. International
Journal of Remote Sensing, 30(12), 3259-3273.

Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS
250 m vegetation index data for crop classification in the US Central Great Plains.
Remote Sensing of Environment, 108(3), 290-310.

White, M. A,, de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P.,
O'Keefe, J., Zhang, G., Nemani, R. R., van Leeuwen, W. ]., Brown, ]. F., de Wit, A,,


http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.html

3152 S. Lhermitte et al. / Remote Sensing of Environment 115 (2011) 3129-3152

Schaepman, M., Lin, X., Dettinger, M., Bailey, A. S., Kimball, J., Schwartz, M. D.,
Baldocchi, D. D., Lee, ]J. T, & Lauenroth, W. K. (2009). Intercomparison,
interpretation, and assessment of spring phenology in North America estimated
from remote sensing for 1982-2006. Global Change Biology, 15(10), 2335-2359.

White, M. A, Hoffman, F., Hargrove, W. W., & Nemani, R. R. (2005). A global framework
for monitoring phenological responses to climate change. Geophysical Research
Letters, 32(L04705). doi:10.1029/2004GL021961.

Xia, Z., Rui, S., Bing, Z., & Qingxi, T. (2008). Land cover classification of the North China
Plain using MODIS EVI time series. ISPRS Journal of Photogrammetry and Remote
Sensing, 63(4), 476-484.

Xiang, B., & Liy, J. -Y. (2002). Relationship between land cover and monsoon interannual
variations in east Asia. Journal of Geographic Science, 12(1), 42-48.

Xiao, X., Hagen, S., Zhang, Q., Keller, M., & Moore, B. (2006). Detecting leaf phenology of
seasonally moist tropical forests in South America with multi-temporal MODIS
images. Remote Sensing of Environment, 103(4), 465-473.

Yiou, P., Baert, E., & Loutre, M. F. (1996). Spectral analysis of climate data. Surveys in
Geophysics, 17(6), 619-663.

Yule, G. U. (1926). Why do we sometimes get nonsense-correlations between Time-
Series? A study in sampling and the nature of time-series. Journal of the Royal
Statistical Society, 89(1), 1-63.

Zhang, X., Friedl, M. A.,, & Schaaf, C. B. (2006). Global vegetation phenology from
Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global

patterns and comparison with in situ measurements. Journal of Geophysical
Research, 111(G04017). doi:10.1029/2006JG000217.

Zhang, X., Friedl, M. A, & Schaaf, C. B. (2009). Sensitivity of vegetation phenology
detection to the temporal resolution of satellite data. International Journal of Remote
Sensing, 30(8), 2061-2074.

Zhang, X., Friedl, M., Schaaf, C,, Strahler, A., Hodges, ]., Gao, F., Reed, B., & Huete, A.
(2003). Monitoring vegetation phenology using MODIS. Remote Sensing of
Environment, 84(3), 471-475.

Zhang, ]., Rivard, B., Sanchez-Azofeifa, A., & Castro-Esau, K. (2006). Intra- and inter-class
spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species
identification using HYDICE imagery. Remote Sensing of Environment, 105(2), 129-141.

Zhao, M. S., Heinsch, F. A,, Nemani, R. R, & Running, S. W. (2005). Improvements of the
MODIS terrestrial gross and net primary production global data set. Remote Sensing
of Environment, 95(2), 164-176.

Zhou, L. M., Tucker, C.]., Kaufmann, R. K,, Slayback, D., Shabanov, N. V., & Myneni, R. B. (2001).
Variations in northern vegetation activity inferred from satellite data of vegetation
index during 1981 to 1999. Journal of Geophysical Research, 106(D17), 20069-20083.

Zoffoli, M. L., Kandus, P., Madanes, N., & Calvo, D. H. (2008). Seasonal and interannual
analysis of wetlands in South America using NOAA-AVHRR NDVI time series: The
case of the Parana Delta Region. Landscape Ecology, 23(7), 833-848.

Zwiers, F. W., & Von Storch, H. (2004). On the role of statistics in climate research.
International Journal of Climatology, 24(6), 665-680.


http://dx.doi.org/10.1029/2004GL021961
http://dx.doi.org/10.1029/2006JG000217

	A comparison of time series similarity measures for classification and change detection of ecosystem dynamics
	1. Introduction
	2. Background
	2.1. Multi-temporal remote sensing data
	2.1.1. Data characteristics
	2.1.2. Time series characteristics

	2.2. Ecosystem characteristics
	2.3. Time series similarity measures
	2.3.1. Original time series data approaches
	2.3.1.1. Distance measures
	2.3.1.2. Correlation measures

	2.3.2. Transformation approaches
	2.3.2.1. PCA
	2.3.2.2. Fourier transforms

	2.3.3. Metric approaches


	3. Methods
	3.1. Satellite time series data
	3.2. Time series properties
	3.3. Time series similarity measures
	3.4. Monte Carlo simulation experiment
	3.5. Sensitivity analysis

	4. Results
	4.1. Time series properties
	4.2. Monte Carlo simulation

	5. Discussion
	5.1. Performance of similarity measures
	5.2. Importance of knowledge of time series characteristics
	5.3. Importance of ecosystem dynamics and knowledge of time series variability

	6. Case study
	6.1. Methodology
	6.2. Results and discussion

	7. Conclusion
	Acknowledgments
	Appendix A
	References


