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Several remote sensing studies have discussed the potential of satellite imagery as an alternative for
extensive field sampling to quantify fire-vegetation impact over large areas. Most studies depend on
Landsat image availability with infrequent image acquisition dates and consequently are limited for
assessing intra-annual fire-vegetation dynamics or comparing different fire plots and dates. The control
pixel based regeneration index (pRI) derived from SPOT-VEGETATION (VGT) normalized difference
vegetation index (NDVI) is used in this study as an alternative to the traditional bi-temporal Landsat
approach based on the normalized burn ratio (NBR). The major advantage of the pRI is the use of
unburnt control plots which allow the expression of the intra-annual variation due to regeneration
processes without external influences. In the comparison of Landsat and VGT data, (i) the inter-annual
differences between the bi-temporal and control plot approach were contrasted and (ii) metrics of pRI
were derived and compared with the inter-annual dynamics of both VGT and Landsat data. Results of these
comparisons, demonstrate the overall similarity between NBR and NDVI data, stress the importance of the
elimination of external influences (e.g., phenological variations), and emphasize the failure of including
post-fire vegetation responses in bi-temporal Landsat assessments, especially in quickly recovering
ecotypes with a strong annual phenological cycle such as savanna. This highlights the importance of using
high frequency multi-temporal approaches to estimate fire-vegetation impact in temporally dynamic

vegetation types.
© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

distribution and in atmospheric chemistry as they represent a
significant source of trace gases and aerosol particles (Hoelzemann

Wildfires play an essential role in several ecological processes
since they partially or completely remove the vegetation layer.
This biomass burning has several effects at a variety of spatial and
temporal scales. At the micro-scale level, fires affect soil structure,
plant nutrition, species composition and competition (Reilly et al.,
2006; Kokaly et al., 2007; Fox et al., 2008), whereas at the landscape
level, fire disturbances result in changes in composition, structure
and function of ecosystems (Eva and Lambin, 2000; Viedma, 2008).
Onregional to global scales fires can result in changes in vegetation
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et al,, 2004; Van Der Werf et al., 2003). As such, they have a
major influence on the global ecosystem distribution (Ehrlich et al.,
1997) and affect the global climate (Running, 2008). Besides the
different effects across spatial scales, the temporal impact of fires
can also vary considerably. For example, in savanna ecosystems
vegetation can completely recover in a matter of weeks (Eckhardt
et al., 2000; Eva and Lambin, 2000), whereas forest regeneration
after burning can take years to centuries (Nepstad et al., 1999).
This also shows how fire impact and vegetation growth are closely
related (Levick et al., 2009; Sturtevant et al., 2009). The vegetation
type influences the fire impact, whereas the fire impact largely
determines the post-fire growth (van Langevelde et al., 2003;
White et al., 2008). Knowledge of the spatio-temporal distribution
of fire-vegetation impact is therefore essential to estimate the fire
effects on ecological dynamics and to understand the fire-climate
interactions.
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1.1. Assessment of fire effects based on remote sensing

Fire-vegetation interactions typically operate at broad tem-
poral and spatial scales, that are unsuitable for field sampling.
Therefore satellite imagery is often used to derive estimates of the
spatio-temporal variability of fire-vegetation dynamics. One qual-
itative indicator used in this context is burn severity which quan-
tifies the degree to which an ecosystem has changed owing to the
fire and incorporates both short- and long-term post-fire effects,
related to the direct fire impact and vegetation regrowth respec-
tively (Lentile et al., 2006). Burn severity is defined as the absolute
magnitude of environmental change caused by a fire (Morgan et al.,
2001; Key and Benson, 2006a).

Despite the wide use of satellite imagery for burn severity
assessment and the current discussion on the temporal dimension
in these assessments (Keeley, 2009), relatively few studies have
addressed the influence of timing on the assessment of post-
fire effects. Therefore, the aim of this paper is (i) to illustrate
the importance of the intra-annual fire-vegetation dynamics in
comparison with inter-annual burn severity estimates, and (ii) to
illustrate the use of coarse to moderate spatial resolution satellite
data as a complementary alternative for monitoring these intra-
annual fire-vegetation dynamics.

1.1.1. Fire effects based on Landsat data

Several studies have demonstrated the utility of the use of
vegetation indices (VI) derived from Landsat imagery for mapping
burn severity (for overview see French et al. (2008)). Most of
this work was based on the correlation between burn severity
mapped in the field and the normalized burn ratio (NBR) or
bi-temporal differenced normalized burn ratio (ANBR) derived
from Landsat imagery, leading to suggestions that NBR and dNBR
maps derived from fine spatial resolution imagery provide a
transferable means to measure burn severity in several ecosystem
types (French et al., 2008). A major drawback of the Landsat
based methodologies, however, is the dependency on image
availability (Ju and Roy, 2008), which is limited due its temporal
resolution (every 16 days) and cloud cover. This drawback is
even more exaggerated in bi-temporal studies as they require
image-to-image normalization (Coppin et al., 2004), including
the removal of phenological, atmospheric and bi-directional
reflectance function (BDRF) effects (Song, 2002; Verbyla et al.,
2008; Veraverbeke et al., 2010d). As a result, dNBR analysis
is practically limited to anniversary image acquisition dates to
reduce shifts in the phenological state of the vegetation between
data acquisition times. Consequently, NBR and dNBR maps are
valuable for obtaining inter-annual information of burn severity
over specific fires, but fail to provide a multi-temporal overview
of the intra-annual variability of fire-vegetation dynamics on
regional to global scales (Michalek et al., 2000). Moreover, cloud-
free multiple images from different years on anniversary dates
are frequently not available (Song, 2002). Another consequence
of these infrequent image acquisitions is the dependence of
dNBR estimates on acquisition date. For example Key (2006)
and Veraverbeke et al. (2010b) illustrated the importance of
the time lag since the fire and seasonal timing of a Landsat
acquisition on dNBR change and variability. This ANBR dependence
on acquisition date inhibits the comparison of dNBR assessments
between different fire dates and fire plots (Eidenshink et al., 2007;
French et al., 2008; Verbyla et al., 2008).

1.1.2. Fire effects based on coarse to moderate spatial resolution
satellite data

The use of coarse to moderate spatial resolution satellite data
(e.g., SPOT-VEGETATION (VGT), MODIS, etc.) has the potential of

providing sound alternatives to NBR and dNBR estimates at the
local scale, given their synoptic coverage and repeated temporal
sampling. At these coarse spatial scales, time series can be analyzed
that allow the assessment of the intra-annual fire-vegetation
dynamics (Geerken, 2009) and the comparison between different
fire dates. In this context, several time series have been proposed
based on the evolution of post-fire VIs without any reference
to the situation prior to the fire event (Fiorella and Ripple,
1993), the difference or ratio in VIs before and after the fire
occurrence (White et al., 1996; Viedma et al., 1997; Henry and
Hope, 1998; Kushla, 1998; Hicke et al., 2003) and the use of a
regeneration index (RI) that employs information of control plots
located close to but unaffected by the fire, to correct for external
influences and phenological variation (Diaz-Delgado et al., 1998;
Diaz-Delgado and Pons, 2001; Riafio et al., 2002; Diaz-Delgado
etal., 2003). The latter approach is founded on the assumption that
the vegetation growth of the control plots can serve as an indicator
of vegetation growth in case the fire had not occurred. As such,
external influences (radiometric calibration uncertainty, errors in
the atmospheric correction, bidirectional reflectance distribution
function (BRDF) effects, topographic impact, and shifts in the
phenological state of the vegetation between data acquisition)
can be masked out and the variation in RI can be interpreted
solely due to regeneration processes. Song (2002) highlighted the
reduction of these kinds of image noise as the primary challenge
when using multi-temporal imagery to monitor forest regrowth.
Moreover, Viedma et al. (1997) and Song (2003) stressed the need
for phenological and seasonal corrections to interpret long-term
regrowth of the vegetation communities. A drawback of the RI
approach, however, is its dependence of static reference data and
inability to quantify heterogeneity within a fire plot. To overcome
these limitations Lhermitte et al. (2010) proposed the control pixel
regeneration index (pRI) that allows the vegetation regrowth to
be quantified for each fire pixel within a fire plot using selected
control pixels based on time series similarity and spatial context.
The pRI analysis provides a valuable alternative to study the intra-
annual fire-vegetation dynamics.

1.2. Paper overview

In the framework of this paper, a savanna pilot study area was
selected for its coexistence of woody and herbaceous vegetation,
which reflect different intra- and inter-annual vegetation dynam-
ics and vegetation greenness (Scanlon et al., 2002) where (i) green
leaf cover of woody vegetation follows a weaker annual wave with
low amplitude variations and (ii) green leaf cover of the herbaceous
vegetation follows a strong annual phenological wave with high
amplitude variations (Fuller et al., 1997; Scanlon et al., 2002). Con-
sequently, differences in intra- and inter-annual fire-vegetation
dynamics and vegetation greenness can be expected for the burn
plots. To assess the importance of these intra- and inter-annual
fire-vegetation dynamics in this paper, firstly the inter-annual
fire-vegetation dynamics derived from Landsat and VGT imagery
were analyzed. This allows us to establish a baseline to compare
both data sets. Secondly, metrics of intra-annual dynamics were
derived from the VGT data using the control pixel based pRI ap-
proach and these metrics were contrasted with the inter-annual
dynamics of both VGT and Landsat data.

2. Data
2.1. Study area
The pilot study area covered Landsat ETM+ scene 168/077

between 23-25°S and 30-32°E in the low-lying savanna of the
northeastern part of South Africa and southern Mozambique
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Fig. 1. Location of the study area and fraction tree cover per pixel (in
percent) derived from MODIS vegetation continuous fields (VCF) of the year
2000. Additionally, the location of points discussed in Fig. 8 is indicated. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(see Fig. 1). Elevations range from 260 to 839 m above sea level,
and mean annual rainfall varies between 350 mm in the north and
750 mm in the south. The rainfall regime within the annual climatic
season can be confined to the summer months (November-April),
and over a longer period can be defined by extended wet and dry
seasons. Most fires occur in the dry season, from approximately
May to October, when herbaceous vegetation is either dead or
dormant, and when deciduous trees have shed their leaves, thereby
contributing to an accumulation of dry and fine fuels that are easily
combustible.

The study area comprises mainly tropical grassland with scat-
tered thorny, fine-leafed trees. In general, three dominant veg-
etation types are present in the fire affected area. In the west,
the fire affected area on granite substrate shows a woody veg-
etation cover of £20% (red bushwillow (Combretum apiculatum),
knobthorn (Acacia nigrescens), tamboti (Spirostachys africana) and
marula (Sclerocarya birrea); Eckhardt et al., 2000). Here grasses ac-
cumulate during the growing season due a relatively low grazing
pressure. In the middle next to the Mozambican border, on basalt
substrates, the woody cover is less (+5%) and grasses are more
palatable and tend to be heavily grazed. Important tree species
here include the knobthorn, leadwood (Combretum imberbe) and
marula. In the eastern part of the study area (Mozambique), woody
cover is much higher (up to 50%). The distribution of tree cover is
also visible in Fig. 1, that displays the fraction tree cover per pixel
derived from MODIS vegetation continuous fields (VCF) for the year
2000. The VCF data were generated based on a regression tree al-
gorithm from monthly composites of 500 m resolution MODIS data
(Hansen et al., 2002, 2003).

2.2. Burnt pixel data

Fire scar data of the year 2000 were identified from the Globscar
product (Simon et al., 2004) developed by the European Space
Agency (ESA) using Along Track Scanning Radiometer (ATSR-2)
daytime data of the year 2000. The product combines the result
of two algorithms for burnt area detection: the K1 algorithm based
on the geometrical characteristics of the burnt pixels in the NIR
and thermal infrared (TIR) space, and the E1 algorithm derived

from four different spectral channels (Simon et al., 2004). The final
product is available with a 1 km spatial resolution at monthly
intervals, but provides for each burnt pixel also the date of fire
detection.

Additionally, burnt pixels were identified from the Global Burnt
Area 2000 (GBA2000) initiative (Grégoire et al., 2003), not for
analysis but to exclude errors in control pixel data. This approach
was chosen since GBA2000 does not provide fire date and cannot
be used for pRI calculations, but allows us to exclude possible
burnt pixels in the control pixel selection approach as it has higher
estimated burnt area (Boschetti et al., 2004).

2.3. Control pixel data

Control pixels were selected for input in the pRI approach
proposed by Lhermitte et al. (2010). The pRI approach employs
a pixel-based selection methodology to correct for external
influences and phenological variation based on the Diaz-Delgado
et al. (1998) logic. To obtain these control pixels that represent the
temporal profile of the fire pixel in case the fire had not occurred,
the pRI approach combines time series similarity and spatial
context. The time series similarity condition allows us to select
control pixels with similar pre-fire vegetation characteristics as
the burnt pixel, whereas the spatial context condition maximizes
similar post-fire environmental conditions. Both these constraints
allow the selection of control pixels that can be used to forecast the
temporal behavior of each burned pixel if the fire had not occurred.

In this study, the pRI procedure of Lhermitte et al. (2010) is
followed to select control pixels from unburnt pixels in both the
Globscar and GBA2000 data sets. The procedure uses: (a) the root
mean square distance (RMSD) applied one year NDVI time series
before the fire (TSSgmsp) as time series similarity measure and
(b) four out of eight candidate control pixels as spatial context
constraint. Based on these constraints, each fire pixel is considered
individually as seed pixel. Based on this seed pixel p, a first run
is started that compares p with its N; spatial adjacent pixels that
did not burn (i.e., candidate control pixels). If N; < 8, the spatial
neighborhood window around is gradually increased (e.g., froma 3
by 3to a5 by 5 window) until N; > 8. Subsequently, the mean time
series of the x = 4 most similar candidate control pixels (based on
TSSrmsp) is used to represent the vegetation growth of each burnt
pixel in case the fire had not occurred without external influences
such as phenology, atmospheric disturbances, etc.

Fig. 2 shows the burnt pixels (reflected by their RMSD in the
TSSrmsp methodology in cyan-yellow-red), the selected control
pixels (in green) and the original NBR image at 30 m resolution
in October 2000 at the end of the fire season (in purple-dark
blue). Comparison of the Globscar burnt pixels and the underlying
NBR image shows that the Globscar data effectively succeeded in
detecting large burnt areas in the study area. It is also clearly visible
that the amount of under-detection of burnt pixels is high, but
that these undetected fire pixels are not selected as control pixels.
These errors of under-detection, for example, can be seen on the
north-western side where large fires are visible in the NBR image
that are not detected by the Globscar project. However, as we focus
in this paper on the variability in post-fire vegetation regrowth, the
accurate amount of burnt pixels is not important and the study can
be repeated as soon as better fire inventories become available.

2.4. Satellite data

2.4.1. Fine spatial resolution

Several studies have demonstrated the utility of spectral indices
derived from Landsat imagery to quantify the fire-vegetation
dynamics. Although a considerable amount of these studies
focused on the use of the normalized difference vegetation
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Fig. 2. Image overlay of (i) original Landsat NBR image at 30 m resolution at 10
October 2000 at the end of the fire season (purple-dark blue), (ii) burnt pixels
reflected by their RMSD in the TSSgusp approach (cyan-yellow-red) and (iii) the
set of selected control pixels (green) for all fire pixels. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

index (NDVI), the normalized burn ratio (NBR) has become an
operational spectral index for fire effects (for a comprehensive
review of remote sensing techniques to assess wildfire severity
using Landsat, see French et al. (2008)). The NBR relates to
vegetation vigor and moisture by combining TM/ETM+ band 4
(NIR: 0.76-0.90 wm) and band 7 (SWIR: 2.08-2.35 pm):

NBR = (NIR — SWIR) \ (NIR + SWIR). (1)

In most cases, the NBR reliably separates burnt from unburnt
surfaces, and optimally identifies a broad gradient of fire-effect
levels within the burn. However, when using mono-temporal post-
fire imagery, unburned sparsely vegetated areas and burned areas
are often confounded (Key and Benson, 2006b). Therefore, pre-
and post-fire NBR images are generally bi-temporally differenced,
resulting in the differenced NBR (dNBR), which permits a clear
contrast between burned and unburned regions and correlates
with burn severity mapped in the field, where exact definitions
of burn severity vary but all relate to the degree of environmental
change caused by fire (Roy et al., 2006).

In this research, the Landsat NBR data were selected as
reference layers to describe the inter-annual fire-vegetation
dynamics of the 2000 burn scars. The selection of the NBR was
based on data availability, cloud cover and the necessity for
anniversary image acquisition dates. As such two anniversary
date images were selected (4 April 2000 and 28 April 2001)
before the Landsat SLC failure (Pringle et al., 2009). Both scenes
were geometrically corrected based on control points and a first
order nearest neighbor algorithm. Subsequently, the images were
atmospherically corrected and converted from digital numbers
to reflectance values using the ATCOR2 algorithm developed
by Richter (2006). Finally, the reflectance values were used to
calculate NBR and dNBR by subtracting the 2001 and 2000 NBR
images and the NBR an dNBR images were resampled to averaged
NBR and dNBR values per 1 km? for each Globscar burnt pixel.

2.5. Coarse spatial resolution

Time series of intra-annual fire-vegetation dynamics were
constructed using NDVI time series derived from ten-daily
NDVI image composites (S10) from the SPOT-VEGETATION (VGT)
sensor over the study area. NDVI data derived from the red
(0.61-0.68 wm) and near infrared (0.78-0.89 wm) bands were

used since the NBR cannot be calculated due to the absence of the
2.08-2.35 wm band onboard of VGT. Preprocessing of the NDVI
data was performed by the Vlaamse Instelling voor Technologisch
Onderzoek (VITO, Mol, Belgium) in the framework of the Global
Vegetation Monitoring (GLOVEG) preprocessing chain. It consisted
of the Simplified Method for Atmospheric Correction (SMAC)
(Rahman and Dedieu, 1994) and compositing of daily images
at ten-day intervals based on the Maximum Value Compositing
(MVC) criterion (Holben, 1986). The final NDVI data set consisted
of ten-daily, 1 km resolution S10 composites for the period
1999-2004 with cloud affected pixels masked as missing data.

3. Methodology

To illustrate the importance of the intra-annual fire-vegetation
dynamics in comparison with inter-annual burn severity estimates
derived from Landsat imagery, (i) the inter-annual fire-vegetation
dynamics of both Landsat and VGT images were contrasted to
establish a inter-comparison baseline and (ii) metrics of intra-
annual dynamics were derived from the VGT data using the pRI
approach and these metrics were compared with the inter-annual
dynamics of both VGT and Landsat data.

3.1. Inter-annual fire-vegetation dynamics

Two different approaches were applied to compare the inter-
annual fire-vegetation dynamics of both Landsat and VGT data.
Firstly, a comparison was performed between the bi-temporally
differenced Landsat dNBR data and the bi-temporally differenced
VGT NDVI values (dNDVI) of corresponding dates. Secondly, a
comparison was established between the control pixel approach
for both Landsat and VGT images for 28 April 2001. This was done
by calculating the pRI:

PRI = Vlpum /Wcontrol (2 )

where Vi, is the NBR and NDVI for burnt pixels of the Landsat
and VGT data, respectively, and Vlcntror is the mean NBR and NDVI
for the selected control pixels of the Landsat and VGT data for
each burnt pixel, respectively. Both approaches allow the inter-
annual fire-vegetation dynamics to be assessed as they compare
unburnt and burnt pixels, but the former approach is performed on
a bi-temporal basis where external differences should be removed
using anniversary dates, whereas the latter approach removes
these differences using control pixels that reflect the vegetation
growth in case the fire had not occurred. The combination
of both approaches therefore allows the intercomparison of
Landsat and VGT data, but also permits the assessment of the
influence of external differences on the estimation of inter-annual
fire-vegetation dynamics.

3.2. Intra-annual fire vegetation dynamics

To assess the importance of intra-annual dynamics, an inte-
grated change approach was used, represented by integrated met-
rics of intra-annual dynamics derived from the VGT data using pRI
time series (pRI*; see Eq. (2)) The integrated change was selected
since it incorporates the combined effect of fire impact and recov-
ery (Ricotta et al., 1999). This approach is relatively robust to noise
in pRI time series as it removes random noise. The integral was cal-
culated between the ideal post-fire time series pRI' = 1 (when the
fire did not occur) and the actual pRI* time series:

51
IPRI =) (1 — pRI") (3)
t=ty
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Fig. 3. Illustration of the IpRI calculation, where (i) the dot-dash line represents
the cubic spline fitted on the post-fire pRI time series, (ii) the moments t, and t;
are displayed as dashed lines and (iii) the three IpRI estimates (IpRI1, IpRI2, IpRI3)
are calculated from the shaded area using the original pRI‘ values and pRI‘ = 1.

where tg and t; define the integration starting and ending dates.
These dates are defined as the moments when pRI‘ = 1. For IpRI1
this implies that g is the burning date and t; is the relative recovery
date related to the number of post-fire observations before the pRI*
reaches one (i.e., when pRI* = 1 for the first time in Fig. 3, which
corresponds to the moment when Vlpy, = Vleoneror). FOr IpRI2, tq
of pRI1 is used as tp, whereas t; is derived from the subsequent
moment when pRI' reaches one (i.e., when pRI* = 1 for the second
time in Fig. 3). For the subsequent IpRlIs, this procedure can be
repeated as ty is derived from the previous IpRI's t1, and the new
t; is derived from the subsequent moment when pRI‘ reaches one.
In total, three metrics (IpRI1, IpRI2 and IpRI3) were calculated and
the selection of ty and t; was limited to one year after fire to avoid
incorporating fire pixels of the 2001 fire season.

The computation of ty and t;, based on the moments when pRI*
equals one, is crucial in the calculation of IpRI values. Therefore,
a smoothed pRI curve based on a cubic spline with two knots
per year was used to remove outlier values in the estimation
of to and t;. The cubic spline is based on piecewise polynomial
functions (between the knots) that are designed to minimize a
weighted combination of the average squared approximation error
over observed data (Harrell, 2001). As a result, the smoothed curve
provides an approximation of the original pRI' time series that is
more robust to outlier values and that can be used to calculate t,
and t; with higher accuracy.

The calculation of the IpRIs is illustrated in Fig. 3, where the
dot-dash line represents the cubic spline fitted on the post-fire
PRI' time series. When the cubic spline reaches one, the moments
to and t; (represented by the dashed lines) are derived and the
three IpRI estimates are calculated based on Eq. (3) from the shaded
area using the original pRI' values. As such, the IpRI provides
measures of combined changes due to the fire event.

IpRI1 estimates will show large positive values for high
fire-vegetation impact. This can be attributed to the large decrease
over time in VIs after fire occurrence (Pereira, 2003; Silva et al.,
2003), resulting in pRI' below one and positive IpRI1 values in
Eq.(3). Positive IpRI1 values close to zero, on the other hand, will be
associated with pixels that show only a small fire impact or contain
a very fast recovery, whereas negative values will originate from
pixels that are falsely detected or recover before the fire is detected,
resulting in pRI' above one and negative IpRI1 values in Eq. (3).
IpRI2 values, on the other hand, will show large negative values
when the post-fire pRI reflects an increased vegetation greenness
some time after the fire impact due to the nutrient availability,
whereas IpRI3 values will show large positive values when the
pRI' drops again after a short period of increased vegetation
greenness.
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Fig. 4. Comparison of the bi-temporally differenced Landsat dNBR and VGT dNDVI
data: (a) Landsat bi-temporal averaged dNBR values per 1 km? for the Globscar
burnt pixels, (b) VGT bi-temporal dNDVI data for the same burnt pixels. In both
figures, yellow-red colors indicate positive values, associated with decreased NBR
and NDVI values one year after the fire. Cyan-blue colors, on the other hand, reflect
negative dNBR and dNDVI values, indicating higher NBR or NDVI values one year
after the fire. Additionally, the location of points discussed in Fig. 8 is indicated.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4. Results
4.1. Inter-annual fire-vegetation dynamics

Fig. 4 illustrates the comparison of the bi-temporal estimates
of fire-vegetation impact by Landsat dNBR and VGT dNDVI data.
Fig. 4(a) shows the bi-temporal Landsat dNBR data represented
by averaged dNBR values per 1 km? for the Globscar burnt pixels,
whereas Fig. 4(b) shows the bi-temporal VGT dNDVI data for
the same burnt pixels. In both figures, yellow-red colors indicate
positive values, associated with decreased NBR and NDVI values
one year after the fire. Cyan-blue colors, on the other hand, reflect
negative dNBR and dNDVI values, indicating higher NBR or NDVI
values one year after the fire. Comparison of both figures shows
that, although local differences occur, dNBR and dNDVI detect
broadly identical spatial patterns when comparing unburnt and
burnt pixels. For example, it is clear that both data sets reflect
positive dNBR and dNDVI values and high fire-vegetation impact
for points 1-3, whereas they show very low or even negative
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Fig. 5. Comparison of the control pixel based estimates of fire-vegetation impact
based on pRI for Landsat NBR and VGT NDVI data: (a) pRI for Landsat NBR values,
(b) pRI for VGT NDVI data. In both figures, yellow-red colors indicate pRI < 1
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NBR or NDVI values for the burnt pixels than for the control pixels. Additionally,
the location of points discussed in Fig. 8 is indicated. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

dNBR and dNDVI values for points 4-5. This is also clear when
performing a linear regression analysis between Landsat dNBR and
VGT dNDVI (not shown), which indicates a statistically significant
linear relationship (p = 0.01) with a R> = 0.39.

Fig. 5 reflects the comparison of the control pixel estimates
of fire-vegetation impact of Landsat NBR and VGT NDVI data,
where Fig. 5(a) and (b) show the control pixel based pRI of Landsat
NBR and VGT NDVI, respectively. Here, yellow-red colors indicate
values below one, associated with decreased NBR and NDVI values
in comparison with the unburnt control pixels. Cyan-blue colors,
on the other hand, reflect pRI > 1 values, indicating higher NBR
or NDVI values for the burnt than for the unburnt control pixels.
Again it is clear that both pRI of NBR and NDVI reflect broadly
identical spatial patterns, although the maps are more speckled
and less smooth than for dNBR and dNDVI. This is also apparent
when performing a linear regression analysis between Landsat
pNBR and VGT pNDVI data (not shown), which again indicates a
statistically significant linear relationship (p = 0.01) but with a
lower R? = 0.10.
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Fig. 6. Illustration of the difference in mean VGT NDVI (dNDVI) for the 1999-2000
and 2000-2001 November-April growing seasons for both burnt and control pixels,
where control pixels are delineated in blue. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Although Figs. 4 and 5 demonstrate agreement between
Landsat NBR and VGT NDVI data, comparison of the spatial patterns
between both figures reveals the differences in fire-vegetation
impact when using either a bi-temporal approach or a control
pixel approach. For example, its is clear that several points which
show a high fire-vegetation impact in the bi-temporal approach
(e.g., points 2), show a less pronounced fire-vegetation impact
when determined by the control pixel approach. This difference
illustrates the importance of external differences on the estimation
of inter-annual fire-vegetation dynamics. This is also clear from
Fig. 6, which shows the difference in mean VGT NDVI (dNDVI) for
the 1999-2000 and 2000-2001 November-April growing seasons
for both burnt and control pixels. This difference in mean NDVI can
be considered an indicator of the phenological difference in total
greenness of vegetation between growing seasons (Defries et al.,
1995). This difference in total greenness between growing seasons
indicates that the spatial patterns of increased and decreased
greenness equally affect the fire and control pixels. Moreover,
contrasting of Figs. 4 and 6 reveals that the spatial patterns of
increased-decreased greenness between growing seasons affects
the bi-temporal fire-vegetation approach, as areas of increased
greenness show a smaller fire-vegetation dNBR-dNDVI impact
than areas with a decreased greenness. However, as this difference
in increased-decreased greenness is similar for the corresponding
control pixels, it is evident that the bi-temporal approach does not
properly account for changes in phenology between years.

4.2. Intra-annual fire vegetation dynamics

Fig. 7 shows the three IpRI metrics derived from the VGT NDVI
pRI' time series, where Fig. 7(a) reflects the initial fire—vegetation
impact (IpRI1), Fig. 7(b) illustrates the increased vegetation
greenness some time after the fire (IpRI2), and Fig. 7(c) shows
the subsequent pRI‘ drop after a short period of increased
vegetation greenness. Comparison of these derived metrics reflects
the importance the intra-annual dynamics, as many pixels show
large positive IpRI1 values, indicating a severe NDVI decrease
after fire, but also large negative IpRI2 values, indicating increased
vegetation greenness some time after the fire, followed again
by large positive IpRI3 values, indicating a new NDVI decrease
after the growing season. This is also clear when looking at the
pRI' time series in Fig. 8 of the example points highlighted in
Fig. 7. These example points were selected randomly to represent
different temporal patterns of fire-vegetation. From Fig. 7 different
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temporal patterns of fire-vegetation impact can be derived, that
show pronounced intra-annual regrowth dynamics. For example,
point 1 shows a large fire-vegetation impact, showing large
positive IpRI1 values where both pRI‘ time series do not reach
the pre-fire level of pRI' = 1 and thus IpRI2 = IpRI3 = 0.
Point 2, on the other hand, shows a large fire-vegetation impact
but reaches pRI' = 1 within one year after the fire, but does not
show a decrease afterwards, whereas point 3 reaches pRI' = 1
rapidly, followed by a period of increased vegetation greenness
and a subsequent drop below pRI* = 1 at the end of the growing
season. This drop does not occur for point 4 that shows a large
period of increased vegetation greenness after a short fire impact.
Point 5 finally shows less pronounced intra-annual dynamics, as its
variability reaches pRI' = 1 after some time and then shows little
deviation from pRI‘ = 1.

Moreover, Fig. 8 illustrates the moments of the April 2000 and
2001 Landsat image acquisitions, represented by a small triangle.
Since these acquisition dates coincide with the end of the growing
season, the importance of the annual phenological variations
related to the growing season can be inferred. For most points, for
example, this annual phenological cycle within the pRI® time series
is clearly apparent as it shows different, often higher pRI values
during the growing season than at the end of the growing season.

These increased values pRI values during the growing season can
also be related to the amount of tree-grass cover (Fig. 1), since
all these points typically occur in regions with relative high grass
abundance and lower tree fractions.

5. Discussion
5.1. Comparison of inter- and intra-annual fire-vegetation dynamics

The comparison of inter-annual fire-vegetation dynamics of
both Landsat and VGT data illustrates two major topics often
discussed in the literature. Firstly, it demonstrates the similarity
of spatial patterns between NBR and NDVI data, although the
correlation at pixel level is low. This similarity of spatial patterns
with differences at the pixel level can also be observed in the study
of Fox et al. (2008), who compared dNDVI and dNBR values in
a heterogeneous forest-scrubland-vineyard environment. These
low correlations at pixel level could be explained when (i)
looking at the study of Veraverbeke et al. (2010a,b) who already
established moderate R? values due to sensor and scale differences
when focusing only on dNBR data, and (ii) the expected decrease
in R> when dNBR data are compared to a different index such as
dNVDL. The lower R? for pNBR and pNDVI values can moreover
be justified by the wider probability distribution function when
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studying a ratio based index (e.g., pNBR and pNDVI) in comparison
with a difference based index (e.g., dNBR and dNDVI) (Marsaglia,
1965). Although this low correlation at pixel level indicates that
NBR and NDVI cannot be used interchangeably due to high
variations at pixel level, the similarity in spatial patterns suggests
that the use of the NDVI index at coarse to moderate spatial
resolution may provide a valuable alternative for NBR, when
the 2.08-2.35 wm wavelength is not available. This was also
established by Epting et al. (2005), Escuin et al. (2008), Hoy et al.
(2008) and Veraverbeke et al. (in press, 2010c) who determined
the dNBR as the optimal index to assess wildfire impact based

on field measurements, but also found high correlations for
dNDVI. Epting et al. (2005) studied the efficiency of single
date imagery to determine the wildfire impact and again the
NBR outperformed NDVI, but also high correlations for NDVI
were obtained. Nevertheless, when fire specific wavelengths are
available at coarse to moderate spatial resolution (e.g., MODIS) the
use of fire adapted vegetation indices, such as NBR, may provide a
better alternative, since NDVI time series never were designed to
capture specific vegetation variation after fire (Lasaponara, 2006).

Secondly, the comparison of inter-annual fire-vegetation
dynamics indicates the importance of the elimination of external
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influences (e.g., plant phenology) when using multi-temporal
Landsat imagery, stressed by Song (2003), Schroeder et al. (2006),
Vicente-Serrano et al. (2008), and Verbyla et al. (2008). In this
context, the use of the higher temporal frequency of imagery, (e.g.,
coarse to moderate resolution imagery such as VGT or MODIS
data Veraverbeke et al., 2010b) can be a vital complement to
traditional Landsat dNBR analysis. Although these coarser data sets
fail to express small scale spatial heterogeneity available in Landsat
imagery (Key, 2006) and are complex to analyze at the sub-pixel
scale (Eckmann et al., 2008) when fires affect vegetation differently
within a coarse pixel, they can serve as complementary data to
analyze the temporal dimension and provide an alternative for the
assessment of burn severity at continental to global scales (e.g.,
Verbesselt et al. (2010)). When using coarse to moderate spatial
resolution data, the control plot approach proposed by Diaz-
Delgado et al. (1998) and adapted by Lhermitte et al. (2010) may
provide a valuable alternative to represent vegetation regrowth
into one index pRI’ that expresses the variation due to regeneration
processes without external influences. Bi-temporal assessments
can only partly contribute to this interpretation of burn severity
as they fail to include intra-annual post-fire vegetation responses.

5.2. Consequences for bi-temporal assessments

The failure of including these intra-annual post-fire vegetation
responses in bi-temporal assessments is clearly apparent when
looking at the intra-annual fire-vegetation dynamics represented
in Figs. 7 and 8, where annual and other regeneration processes
can be observed. Due to this intra-annual variability, the timing
of Landsat image acquisition will greatly influence the derived
Landsat measures. This is evident when looking at the moment of
Landsat acquisition in Fig. 8, where the moments of the April 2000
and 2001 image acquisition are represented by a small triangle. In
this figure, small changes in acquisition dates will lead to different
conclusions on post-fire vegetation interaction due to two main
effects. Firstly, fire-induced change decreases with vegetation
recovery (Allen and Sorbel, 2008; Veraverbeke et al., 2010b),
especially in quickly recovering ecotypes such as savanna. Allen
and Sorbel (2008), for example, established large differences due
to fast recovery when the image acquisition timing differed in bi-
temporal burn severity assessments. Secondly, the seasonal timing
determines the vegetation productivity and wetness of both the
control and burned plots which influences the annual phenological
cycle and affects the absolute magnitude of change in any bi-
temporal data set (Key and Benson, 2006a; Veraverbeke et al.,
2010Db). Verbyla et al. (2008), on the other hand, reported large
differences in dNBR values due to a combined seasonality effect
of senescing vegetation and changing illumination conditions.

The senescing effect in combination with tree-grass interaction
plays a crucial role in our study area, as can be seen by looking
at the annual phenological cycle within the pRI' time series for
the pixels that show low tree fractions in Fig. 1. The importance
of this annual phenological cycle was stressed by Fuller et al.
(1997), Scanlon et al. (2002), and Lu et al. (2003) who suggested
that in savanna ecosystems the grass layer dominates the annual
cycle of the NDVI signal throughout most of the seasonal cycle,
and that only during the senescent dry season the contribution
of the tree is relatively more important. This difference can be
explained by looking at the strategies for water use, where grasses
are considered to be intensive exploiters while trees and shrubs
are extensive exploiters (Burgess, 1995). As such, trees, which
have root systems that penetrate both the shallow and deeper soil
layers have a more persistent supply of soil water than grasses,
which have dense, shallow root systems and depend on water that
is ephemerally available in the upper layer of the soil. Relative
to trees, grasses exhibit a greater areal expansion of biomass in

response to rainfall in savanna ecosystems, whereas short-term
greening of trees is restricted by the standing woody biomass.
All these factors contribute to greater expected VI response to
precipitation by grasses than by trees (Lu et al., 2003). The effects of
annual phenological cycle and fast recovery have however severe
implications for the use of the regeneration indices in mixed
ecosystems with herbaceous cover. For example, pRI observations
at a certain moment in the growing season tend to indicate
a complete vegetation recovery or even increased greenness,
whereas this is not necessarily true for the woody vegetation
component. Altogether, these effects limit any comparison of two
bi-temporal fire-vegetation impact assessments and link closely to
the recent confusion in post-fire effects terminology (fire severity,
burn severity, ecosystem response, etc.) (Keeley, 2009).

One of the main interests of estimating the spatio-temporal
variability of fire-vegetation dynamics is the categorization of the
fire-affected pixels in severity classes (Epting et al., 2005; Key and
Benson, 2006b). This classification is however not straightforward
due to the difficulty in comparing dNBR assessments between
different fire dates and ecosystems (Eidenshink et al., 2007;
Lentile et al., 2007; Miller and Thode, 2007). Miller and Thode
(2007) proposed a relative version of the dNBR that allows
the comparison among different land cover types, especially in
heterogeneous landscapes. This approach does not handle timing
differences which may be present among different assessments.
Consequently, the absolute values of bi-temporal dNBR maps are
highly dependent on the timing of the assessment and caution
is advised when using the bi-temporal values to monitor and
compare trends in fire-vegetation impact in time or across regions.
The use of pRI' time series, however, shows to have potential
as an input parameter to spatio-temporally compare trends in
fire-vegetation impact.

In this study, we proposed a metric IpRI that integrates this
temporal variability. This approach was selected to average indi-
vidual errors over time and remove random noise (the expected
integral of random noise is zero). IpRI estimates are therefore ro-
bust to random noise and are moreover relatively independent
from small errors in the determination of ty and t;. This can be ex-
plained by the fact the pRI' values at the end of the recovery only
minimally contribute to the total IpRI. This integrative approach is
as such a first step to a spatio-temporal approach to assess severity,
which can also be applied on different data sets (e.g., Veraverbeke
et al. (2010a)), but it should also be tested and refined in differ-
ent ecosystems with other environmental and fire characteristics
where, for example, a vegetation greenness increase some time af-
ter the fire impact followed by a new greenness drop after a short
period are not expected. Therefore, interpretation of IpRI signals in
these ecosystems will be different, but the integration of temporal
variability can still provide a valuable approach due to its robust-
ness to noise.

6. Conclusion

Wildfires play an essential role in several ecological processes
and affect the vegetation regrowth at a variety of spatial and
temporal scales. Several studies have investigated the potential of
satellite imagery to quantify the spatio-temporal fire-vegetation
impact over large areas. Most studies, however, depend on
Landsat image availability, for which image acquisition dates are
limited, resulting in a reduced capacity to capture the intra-
annual fire-vegetation dynamics and the difficulty in comparing
different fire plots and dates. The objective of this paper was
to illustrate the importance of the intra-annual fire-vegetation
dynamics in comparison with inter-annual burn severity estimates
derived from Landsat imagery. In this context, a savanna pilot
study area was selected based on its combination of woody and
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herbaceous vegetation, which show different intra- and inter-
annual vegetation dynamics and vegetation greenness.

Four main conclusions can be derived from this analysis on
intra-annual fire-vegetation dynamics based on the comparison of
Landsat NBR and VGT NDVI data:

o It demonstrated the similarity in spatial patterns when using
NBR and NDVI data in both bi-temporal and control pixel
approaches.

e It revealed the importance of the elimination of external in-
fluences (e.g., phenological variations) when using bi-temporal
Landsat imagery. This confirmed the importance of the control
pixel approach (pRI) which provides a valuable alternative to
represent vegetation regrowth into one index pRI* without the
effect of external influences.

e The use of the pRI and the integrated metric IpRI confirmed the
failure of including intra-annual post-fire vegetation responses
in bi-temporal assessments, especially in quickly recovering
ecotypes such as savanna where the grass layer dominates the
annual NDVI cycle throughout most of the season.

o It illustrated the potential of the pRI' time series to operate
as an input parameter to spatio-temporally compare trends in
fire-vegetation impact.
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