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a  b  s  t  r  a  c  t

Spatio-temporal  variability  in  energy  fluxes  at the earth’s  surface  implies  spatial  and  temporal  changes
in  observed  land  surface  temperatures  (LST).  These  fluxes  are  largely  determined  by  variation  in  meteo-
rological conditions,  surface  cover  and  soil  characteristics.  Consequently,  a change  in  these  parameters
will be  reflected  in a  different  temporal  LST  behavior  which  can  be  observed  by remotely  sensed  time
series. Therefore,  the objective  of this  paper  is to perform  a  quantitative  analysis  on  the  parameters  that
determine  this  variability  in LST  to estimate  the  impact  of changes  in  these  parameters  on  the  surface
thermal  regime.  This  study  was  conducted  in the  Russian  Altay  Mountains,  an  area  characterized  by
strong  gradients  in  meteorological  conditions  and  surface  cover.  Spatio-temporal  variability  in LST  was
assessed  by  applying  the  fast Fourier  transform  (FFT)  on 8 year  of  MODIS  Aqua  LST  time  series,  herein
considering  both  day  and  nighttime  series  as  well  as  the  diurnal  difference.  This  FFT  method  was  chosen
as it  allows  to discriminate  significant  periodics,  and  as  such  enables  distinction  between  short-term
weather  components,  and  strong,  climate  related,  periodic  patterns.  A  quantitative  analysis  was  based
on multiple  linear  regression  models  between  the  calculated,  significant  Fourier  components  (i.e.  the
annual and  average  component)  and  five  physiographic  variables  representing  the  regional  variability
in  meteorological  conditions  and  surface  cover.  Physiographic  predictors  were  elevation,  potential  solar
insolation,  topographic  convergence,  vegetation  cover  and  snow  cover  duration.  Results  illustrated  the
strong  inverse  relationship  between  averaged  daytime  and  diurnal  difference  LST  and  snow  duration,
with  a R2

adj
of  0.85  and  0.60,  respectively.  On  the  other  hand,  nocturnal  LST  showed  a strong  connection

with  elevation  and  the  amount  of  vegetation  cover.  Amplitudes  of  the  annual  harmonic  experienced  both
for daytime  and for nighttime  LST  similar  trends  with  the set  of physiographic  variables  –  with  stronger
relationships  at night.  As such,  topographic  convergence  was  found  to be  the  principal  single  predic-

tor  which  demonstrated  the  importance  of  severe  temperature  inversions  in  the  region.  Furthermore,
limited  contribution  of  the  physiographic  predictors  to the  observed  variation  in the  annual  signal  of
the  diurnal  difference  was  retrieved,  although  a significant  phase  divergence  was  noticed  between  the
majority  of the  study  region  and  the  perennial  snowfields.  Hence,  this  study  gives  valuable  insights  into
the complexity  of the  spatio-temporal  variability  in  LST,  which  can  be  used  in future  studies  to estimate
the  ecosystems’  response  on changing  climatic  conditions.
. Introduction

Land surface temperature (LST) plays an essential role in interac-

ions and energy fluxes at the surface–atmosphere interface (Coll
t al., 2005; Sobrino et al., 2003). In detail, spatio-temporal vari-
bility in LST reveals spatial and temporal changes in the state of
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the land surface which has been widely implemented in surface
energy and water budget estimations (Bastiaanssen et al., 1998;
Karnieli et al., 2010; Roerink et al., 2000b).  In this context, LST
has been used for a wide range of environmental studies ranging
from forest fire risk assessment (Manzo-Delgado et al., 2009) to
urban heat island (UHI) monitoring (Chen et al., 2006; Weng et al.,
2004) and permafrost monitoring and modelling (Hachem et al.,

2009; Langer et al., 2010; Westermann et al., 2010). All these stud-
ies rely on the sensitivity of LST to regional differences in surface
albedo, the amount of water available for evaporative cooling, wind
speed and surface roughness which regulate the strength of the
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ensible and latent heat fluxes (Oke, 1987). These regional differ-
nces are the result of influencing factors like vegetation cover,
urface moisture, soil types, topography and the meteorological
onditions (Sun and Pinker, 2004; Julien et al., 2006; Sandholt
t al., 2002; Veraverbeke et al., in press). Consequently, LST plays

 major role in the global change problematic and associated feed-
ack effects: an initial increase in surface temperature might alter
he influencing factors (e.g. accelerated snow melt, desertifica-
ion, precipitation increase) which in turn can reinforce (positive
eedback) or weaken (negative feedback) this increase. As such,
n a changing climate, understanding and quantifying the spatio-
emporal relationships between LST and its influencing factors is
ssential to make future predictions about global and regional
emperature trends and coupled feedback effects (McCarthy et al.,
001).

Therefore, the development of quantitative models that describe
his spatio-temporal relationships between LST and the environ-

ental factors is crucial. Accordingly, obtaining these models was
et as one of the main objectives, recently discussed on the Inter-
ational Workshop on the Retrieval and Use of Land Surface
emperature (NCDC, 2008). This is particularly important in moun-
ain ranges, where temperatures have increased at a higher rate
han the global mean during the 20th century (McCarthy et al.,
001).

A variety of environmental factors interact in mountain systems,
esulting in complex spatio-temporal patterns of LST with large
emperature gradients at small distances (Fu and Rich, 2002; Liu
t al., 2006; Pouteau et al., 2011). These patterns and gradients often
re the result of a strong topographic variation interacting with
eterogeneous snow and land cover and variable meteorological
onditions. Several studies have examined the thermal variability
n mountain environments to assess the role of different parame-
ers in these patterns and gradients. For example, Chuanyan et al.
2005) compared methods to model air temperature and demon-
trated that topographic parameters such as elevation and slope
ave the biggest impact on the variability of local climate. Pouteau
t al. (2011) highlighted the role of (i) topographic convergence
nd potential insolation on local night frost risk, (ii) elevation, lati-
ude and the distance to salt lakes on regional temperatures. Snow
over also plays an important role in high mountains as it strongly
ffects the biotic and abiotic environment which is reflected in
egetation zonation and composition (Kozlowska and Rackowska,
006). Snow influences plant formation by reducing the duration
f the growing season, increasing soil moisture due to meltwa-
er supply and altering subsurface temperatures (Kozlowska and
ackowska, 2006; Zhang, 2005). Additionally, an increase in snow
over extent increases surface albedo, which consequently reduces
urface temperatures by decreasing the absorption of solar radi-
tion (Bounoua et al., 2000; Kaufmann et al., 2003). Vegetation
over is another major player influencing surface temperatures
s reported by Bounoua et al. (2000) who observed a cooling in
ummer temperatures caused by increased terrestrial vegetation
ithin land covers. This effect was confirmed by Jeong et al. (2009)

nd Kaufmann et al. (2003).  Furthermore, a slight warming during
he winter was observed, primarily due to reduced albedo which is
aused by partial masking of the snow surface by a denser canopy
Bounoua et al., 2000).

Accurate models that describe the spatio-temporal rela-
ionships between LST and the environmental factors require
onsequently an extensive spatio-temporal dataset of LST and
actors as topography, snow, vegetation and insolation. Remote
ensing data, due to its repetitive and synoptic nature, is very

seful in this framework as they allow to integrate spatial and
emporal information of LST, snow and vegetation cover with exis-
ent topographical information. Consequently, remote sensing data
an provide a dataset, that allows to model the spatio-temporal
arth Observation and Geoinformation 20 (2013) 4–19 5

patterns between LST, snow cover and vegetation in an mountain-
ous topography.

Different techniques have been previously reported to describe
and quantify temporal characteristics of remote sensing time series
(Coppin et al., 2004; Eastman and Fulk, 1993; Jönsson and Eklundh,
2002, 2004). Among the different methods, the fast Fourier trans-
form (FFT) has been successfully applied by various authors to
minimize noise and enhance relevant temporal features (Azzali and
Menenti, 2000; Evans and Geerken, 2006; Jakubauskas et al., 2001;
Lhermitte et al., 2008; Menenti et al., 1993; Olsson and Eklundh,
1994). The FFT decomposes time series into periodic signals in the
frequency domain, which enables the analysis of signals with a
specific frequency. Moreover, by selecting only those relevant har-
monics, application of the FFT to time series comprising multiple
years, retains only the general recurring signals. Applied to LST
time series, this means that only long-term temperature features
(climate) can be studied, whereas short-term variable tempera-
ture signals (weather) can be discarded. Consequently, the FFT is
a suited technique to compare climate related temperature signals
to datasets of explanatory variables.

Hence, the main objective of this paper is to perform a quanti-
tative analysis of the parameters determining the spatio-temporal
variability in LST. Therefore, the relationship between the signifi-
cant Fourier components derived from 8 years of LST time series
and five physiographic variables (elevation, snow cover, vegeta-
tion cover, topographic convergence and potential solar radiation)
is examined by multiple regression analysis. This study was per-
formed in the Russian Altay Mountains, an area characterized by
strong spatio-temporal variability in the five physiographic vari-
ables (Klinge et al., 2003; Shaghedanova et al., 2002). At first, the
study area and satellite data are presented in Section 2, while the
Fourier transform is explained in Section 3. Results of the FFT, and
relationships between components and physiographic variables
are shown in Section 4 and discussed in Section 5.

2. Study area and data

2.1. Study area

The study area (Fig. 1) is situated in the Russian Altay Mountains,
more detailed in the Kosh-Agach Region of the Altay Republic. This
region has been subject to a tradition of geophysical, geograph-
ical and archaeological research (Gheyle, 2009; Goossens, 2009;
Marchenko, 2007). The Russian Altay Mountains extend between
approximately 48 and 53◦N latitude and 83 and 92◦E longitude
with the Kosh-Agach Region situated at the meeting point of four
countries: China, Kazakhstan, Mongolia and the Russian Federation.

The climate in the area is extremely continental with long, cold,
dry winters and short summers (König and Rilke, 2004). The mean
annual air temperatures (MAAT) at the Kosh-Agach meteorological
station (Fig. 1) for 1966–1975 was  −5.38 ◦C, while for 1985–1994
it was −4.28 ◦C (Fukui et al., 2007). Furthermore, strong tempera-
ture inversions occur in the former Pleistocene lake-systems of the
Kuray and Chuya basins (Fig. 1) (Baker et al., 1993; Rudoy, 2002)
and persist for several months (Klinge et al., 2003). In winter, the
Siberian anticyclone blocks precipitation in the study area, except
in the high mountains. Summers, however, are relatively warm and
humid, with precipitation brought by the northwesterly flow. As
a result, annual sums of precipitation vary from almost zero up
to 1500 mm,  depending on altitude and exposure (Shaghedanova
et al., 2002).
The geomorphology of the region can be divided into several
categories. Firstly, the high mountain ranges of Katun, Tabyn-
Bogdo-Ola, North/South Chuya and Kuray contain several glaciated
peaks, which are among the highest in Siberia ranging up to
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ig. 1. Location of the study area, a Landsat TM (RGB-321) image is used as backgr
he  Kosh-Agach region were included. Consequently, the region of interest was exte

506 m (Mount Belukha). Furthermore, ancient peneplanes (e.g.
kok Plateau), together with intermontane depressions (e.g. Chuya
nd Kuray Steppe) give the landscape an open and vast character,
ypical for the study area (Shaghedanova et al., 2002).

The vegetation in the study area is characterized by a strong
eveloped vertical zonality, further complicated by topography
ffects (forested northern and treeless southern slopes) and an
ncreased aridity towards the south east (Shaghedanova et al.,
002). Desert steppe (mainly Stipa glareosa) is typical for the inter-
ontane depressions (Chuya and Kuray steppe), as well as for

he northwest of Mongolia (König and Rilke, 2004; Zhigulskaya,
009). North-oriented slopes and more humid river valleys are
ominated by woodlands, mainly Larix sibirica with sporadic occur-
ence of Pinus sibirica (Pelánková and Chytrý, 2009). These types
ainly occur in the northwest of the study area. Above the tree

ine, which is situated between 2200 and 2500 m,  the subalpine
one accommodates shrublands and subalpine meadows, which
hift towards alpine tundra in the alpine belt (Shaghedanova et al.,
002).

.2. Data

.2.1. Satellite data
MODIS (Moderate Resolution Imaging Spectroradiometer)

atellite time series were used in this study. The MODIS sensor
s onboard the Terra and Aqua satellites and provides four daily
bservations at 1:30 AM (Aqua ascending node), 10:30 AM (Terra
escending node), 1:30 PM (Aqua descending node) and 10:30 PM
Terra ascending node) local time (Justice et al., 2002). Eight year
f Aqua MODIS daily LST scenes (MYD11A1, 1 km resolution, 1K
ccuracy (Coll et al., 2005; Wan, 2008)), Aqua and Terra MODIS
aily snow product (MYD10A1/MOD10A1, 500 m resolution) and
qua MODIS 16-day NDVI product (MYD13Q1, 250 m resolution)
overing the study area, were acquired for the period 01/10/2002
o 30/09/2010. Daytime LST, nighttime LST, snow cover, NDVI

nd associated quality assurance (QA) layers were subsequently
xtracted. Aqua LST images were chosen instead of scenes from the
erra platform, as Aqua record images around middle night and day.
ight year of data was acquired to enhance climate related signals
 To increase the knowledge about the regional variability, the border areas around
to the rectangle showed, covering parts of Russia, Mongolia, Kazakhstan and China.

and reduce the influence of interannual variability and short-term
effects.

Preprocessing included subsetting, reprojecting and the
removal of spurious data-points. These spurious data-points
encompass pixels affected by clouds and other atmospheric dis-
turbances, which were removed by using the enclosed quality
assurance file. Several authors address the importance of such a
thoroughly screening of cloud contaminated data points in time
series analysis (Chen et al., 2004; Julien and Sobrino, 2010; Julien
et al., 2006). Nevertheless, some spurious data points might still
have entered the LST dataset resulting in some erroneous values.
Therefore, and to enable comparison with NDVI composites, daily
LST time series were compiled into 16-day composites (LSTday and
LSTnight). Self-created composites, created by using a median value
composite method, were preferred above standardized MODIS  16-
day LST products due to the non-uniform sample-interval near
year-end of the latter. These standardized products would affect
the Fourier components as demonstrated by Scharlemann et al.
(2008). The median composite method was  preferred thanks to
its independency towards outliers, as well as the representation
of more naturally averaged temperatures. Contrary, the more used
maximum value composite algorithm (Holben, 1986) would tend
to overestimate temperatures. However, despite this chosen com-
posite method, some errors were inevitably introduced by the
impossibility to retrieve LST images during cloudy periods: By
restricting the LST data to clear-sky days and cloud free nights, it is
likely to underestimate winter temperatures (due to strong radia-
tive cooling) and overestimate summer temperatures. Therefore,
the accuracy of the interpreted relationships between Fourier com-
ponents and physiographic variables will increase with decreasing
number of cloud covered days. Finally, time series of the diurnal
difference, LSTdiff, were created by subtracting the two  compiled
16-daytime series, LSTday and LSTnight. This diurnal temperature
range was  incorporated as it reflects the surface’s buffering capacity
(Verstraeten et al., 2006).
In addition, daily snow cover time series were calculated at 1 km
resolution by resampling the Aqua snow cover product. Cloud con-
taminated data was  as much as possible filled by the corresponding
Terra product. Remaining data-gaps were filled by comparing the
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ixel status the day just before and after a cloudy period: if both
ixels showed the same status, the cloud gaps were consequently
iven this status. If both pixels however showed opposite val-
es (mainly during onset/offset periods), the cloudy pixels were
ssigned as snow covered. The latter was performed as the identi-
cation of thin snow layers (<1 cm)  can be problematic (Hall and
iggs, 2007). This uncertainty is, however, diminished by the aver-
ging effect and did not exceed 7 days for a single year. Furthermore,
6-day, 1 km NDVI time series were created by resampling the
50 m product. Additionally, zero values were assigned to snow
overed pixels.

.2.2. Topographic data
A digital terrain model was derived from SRTM (Shuttle Radar

opography Mission) elevation data (Jarvis et al., 2008; Reuter
t al., 2007). This altitudinal data, with 90 m horizontal resolution
nd a vertical accuracy better than 9 m,  was resampled to and co-
egistered with the MODIS LST images in order to enable a statistical
omparison.

.2.3. Physiographic predictors
Based on the terrain model and satellite data, five different

ypes of physiographic variables were calculated to examine their
xplanatory power in the observed spatial patterns of LST-metrics
Fig. 2). Firstly, elevation at 1 km resolution was  directly derived
rom the obtained digital elevation model. Secondly, among sev-
ral potential snow metrics (Reed et al., 2009), the averaged yearly
umber of snow covered days, nsnow, was selected to represent the
now influence for every pixel in the study area. This particular met-
ic was preferred because it does not require the calculation of an
nset/offset value of the snow season, which demands subjective
hresholds. Thirdly, the influence of vegetation on the LST-metrics
as estimated by calculating the averaged yearly integrated NDVI

iNDVI) for every pixel. This iNDVI-metric was  chosen among the
everal phenological metrics as it summarizes the complete grow-
ng season (Reed et al., 1994; Zhang et al., 2003). Fourthly, the
nfluence of the topographical position was examined by calcu-
ating the compound topographic index (CTI) (Gruber et al., 2009;
uinn et al., 1991). This index is a function of both the slope and

he upstream contributing area and has been previously used as an
ndex of cold air pooling (Holden et al., 2010; Pouteau et al., 2011).
ow CTI values represent convex position positions like mountain
rests, while high CTI values correspond to coves or hillslope bases.
his is important as cold-air pooling or temperature inversions
requently happen in mountain environments, especially when
arge-scale winds are weak and skies are clear (Clements et al.,
003; Lundquist et al., 2008). These inversions exist when warm air
verlies cooler air. This suppresses turbulence and effectively elim-
nates upward motion (Oke, 1987). Accordingly, cold air, which is
he result of radiative cooling, is trapped by this effective lid which
revents the surface and air from heating up. Finally also the total
early potential solar radiation (potSRAD) was calculated. This vari-
ble was obtained by adding up solar radiation, calculated at hourly
nterval by the method described by Kumar et al. (1997), for clear
ky conditions. This method accounts for latitude, elevation, slope
nd aspect, sun angle and topographic shading.

. Methods

.1. Fast Fourier transform

The three compiled LST time series (LSTday, LSTnight, and LSTdiff)

ere decomposed into the frequency domain by applying the
ixed radix fast Fourier transform (FFT) (Singleton, 1969). This is a

omputationally fast variant of the discrete Fourier transform (DFT)
hich can be used to transform any equidistant discrete time series
arth Observation and Geoinformation 20 (2013) 4–19 7

f(t) into a set of scaled cosine waves (components) with unique
amplitude Ak and phase shift �k (Bracewell, 2000). As such the
original time series can be reconstructed by:

f (t) = A0 +
N−1∑

k=1

Ak cos(2�kt + �k) (1)

where A0 is the arithmetic mean of the time series, k is the fre-
quency of the FFT component, N is the number of samples in the
time series and t is an index representing the sample moment. This
representation as a sum of unique cosine waves, allows to assess
the contribution of each frequency to the original signal (Lhermitte
et al., 2008).

Applying the FFT to the diurnal difference is similar to calculat-
ing the Fk-distance between the FFT components of the two time
series. This Fk-distance is used as a similarity measure in a hier-
archical image segmentation algorithm (Lhermitte et al., 2008).
Mathematically, the Fk-distance corresponds to subtracting the two
time series for each observation in the temporal sequence and using
the amplitude of the resulting difference vector.

Relevant harmonics, used in the regression analysis, were
selected by examining the temporal variability in the FFT com-
ponents (Lhermitte et al., 2008). This was achieved by means of
calculating the contribution of each amplitude to the total ampli-
tude variance (Jakubauskas et al., 2001).

3.2. Regression analysis

The relation between the five different physiographic predic-
tor variables and the relevant Fourier-components was examined
by applying multiple linear regressions models (i.e. an approach
to model the relationship between a response variable Y and one
or more predictors X) with varying numbers of physiographic pre-
dictors as independent variables. Linear regression was  preferred
over quadratic equations, to prevent overfitting and promote anal-
ysis of the different relations. In addition, several authors addressed
a linear relationship between temperature and one of the physio-
graphic variables, e.g. elevation (Oke, 1987; Pouteau et al., 2011).
Interaction terms were included to consider that the effect of a
certain variable on the response might be influenced by the level
of another variable. Furthermore, collinearity effects were exam-
ined by calculating Spearman’s rank order correlation coefficient
(e.g. Hjort et al., 2010) which showed no sign of an unacceptably
high level of intercorrelation between the independent variables
(all values <0.6). Finally, also the potential problem with spatial
autocorrelation (i.e. the fact that nearby LST-values are likely to
be similar) was addressed by taking only one pixel every 10 km.
For every possible combination of variables, the adjusted R2

adj
-

value (coefficient of determination adjusted for the number of
independent variables) and root mean square error (RMSE, esti-
mator for the difference between observed and modelled values)
were calculated to evaluate how well the particular variable-
constellation explained the observed variance in the Fourier
component.

4. Results

4.1. FFT applied on LST time series

Fig. 3A displays the regional averaged, single sided amplitude
spectrum of the FFT analysis applied on all three LST time series.

It is clear from the figure that significant peaks are found at k = 0,
k = 8 and to lesser extent at k = 16 and k = 24. The frequency peak
at k = 0 corresponds to the average component, which represents
the average LST-value throughout the observation period. Averaged
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Fig. 2. Elevation (A), nsnow (B), iNDVI (C

ver the study area, A0,day = 3.5 ◦C, while at night, A0,night = − 12.7 ◦C
ith A0,diff = 16.2 ◦C. However, Fig. 3A also demonstrates significant

nnual oscillations for all three time series as illustrated by the peak
t the annual frequency (k = 8). These oscillations are related to the

trong annual signal present in both LSTday and LSTnight series and
he seasonal difference between them. These strong annual sig-
als reveal the extreme seasonality in these continental mountain
anges.
(D) and potSRAD (E) for the study area.

At night, the annual term explains 93.3 ± 1.7% of the total ampli-
tude variance, while during daytime the relative contribution is at
91.7 ± 1.7%. Other frequencies hardly exceed the 1% value (both day
and night) which is reflected by their relatively low amplitudes in

Fig. 3A. In contrast, the annual term for the diurnal difference only
describes 63 ± 12% of the total variance, which can be explained
by the weaker annual signal present in these series and more pro-
nounced higher frequencies. This is well demonstrated in Fig. 3B
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hich shows more short-term oscillations present in the original
STdiff time series of a random pixel in contrast to its original LSTday
nd LSTnight series. Despite this, the different amplitude spectra
onfirmed the relevance of the annual term in the dataset which
ill therefore, together with the average term, be used for fur-

her analysis. These components are illustrated in Fig. 3B for
he three LST time series of a random pixel. Consequently,
ig. 3B also demonstrates how LST composites can be repre-
ented by the combination of their average and annual Fourier
omponent.

.2. Spatio-temporal variability in LST

Fig. 4 contains representations of the amplitudes of Fourier com-
onents A0 and A8 for all three temperature time series and reveals
he spatio-temporal variability in LST. In addition, six pixels show-
ng significant differences in average and annual LST signals are
lotted in Fig. 5. These pixels are characteristic for certain subre-
ions and as such enhance interpretation of the regional variability.
ccordingly, Fig. 5 shows the thermal regime for pixels located in

he dry steppe areas of Mongolia (�), Ukok (♦) and Chuya (�) as

ell as for the Chuya River Plain (�, with moist grass) and Katun
iver Valley (�, covered with coniferous forests) and on the peren-
ial snowfields around Mt.  Belukha (◦). The location of these pixels

s illustrated in Fig. 4.
s in a good approximation of the actual LST curve.

Spatial (Fig. 4) and temporal (Fig. 5) comparison of the mean
term (A0) shows that during daytime steppe environments are
characterized by an extreme thermal regime: hot summers, alter-
nated with very cold winters, result in high A0,day-values (Fig. 4A).
In contrast, lower A0,day-values are seen in the peneplanes and river
valleys, mainly due to lower summer temperatures (Fig. 5A). Peren-
nial snowfields exhibit the lowest average daily temperatures in
the study area. At night however, the steppe areas show relatively
lower averaged temperatures (A0,night) than for instance in the val-
leys of the northwest (Figs. 4C and 5B). Moreover, A0,night-values
on the Ukok plateau, which can be seen as a high elevated steppe
ecosystem, are among the lowest in the study area (Fig. 5B). Conse-
quently, these steppe areas have the highest A0,diff-values (around
25◦), while the river valleys experience less diurnal amplitude
(Figs. 4E and 5C). Furthermore, annually averaged diurnal differ-
ences on high mountain ranges hardly exceed 10◦ (Fig. 4E).

When considering annual amplitudes (A8), steppe areas gener-
ally show strong seasonality (Fig. 4B and D)  characterized by low
winter and high summer surface temperatures (Fig. 5A and B). In
this context, it is striking that A8,day-values in Mongolian steppes
are much lower than in the Russian steppes (Fig. 4B). Secondly, the
Chuya River Plain displays less daily seasonality than the steppe by

which it is surrounded (Fig. 4B), although this difference disappears
at night. Besides, low A8,day and A8,night-values are encountered
in the forests of the northwest and on the perennial snow-
fields. Annual amplitudes of the diurnal difference (A8,diff) reveal a
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ig. 4. Spatial variability in amplitudes of the 0th (A, C, E) and 8th (B, D, F) FFT-co
epresented in Fig. 5 are marked by their corresponding symbol.

ontrast in seasonality between west and east. While relatively low
alues are typical for the west (with the lowest values observed on
he perennial snowfields), larger annual variation in diurnal ampli-

ude occurs in the east (Fig. 4F). Despite this general east–west
ifference, the lower steppe parts of Mongolia experienced rel-
tively lower seasonality as showed in Figs. 4F and 5C.  Largest
easonality appears in the Chuya and Kuray steppe, although
ent for LSTday (A, B), LSTnight (C, D) and LSTdiff (E, F). The locations of the six pixels,

significantly lower A8,diff-values were retrieved in the Chuya River
Plain (Figs. 4F and 5C). Additionally, these regional differences
in seasonality of the diurnal difference were not only restricted

to divergent amplitudes, but also in the timing of the maximum
difference: for instance, it is shown in Fig. 5C that at Mt.  Belukha,
this maximum is observed during winter while in contrast, all
other pixels showed their maximum in late spring/early summer.
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egional variation in timing of this maximum can be assessed by
alculating the phase of the annual harmonic (k = 8). Mathemati-
ally, this was achieved by calculating �8 from Eq.(1) for which the
esults are presented in Fig. 6. Accordingly, Fig. 6 indicates that
erennial snowfields showed less diurnal difference in summer
han during winter which contrast with the overall behavior where
he maximum difference is observed in the months May–July. The
ame representations can be made for phases of the annual signal
resent in LSTday and LSTnight, but these were not considered in this
tudy due to little regional variation.

.3. Linear regression analysis
The results of the multiple linear regression analysis are summa-
ized in Table 1 and Figs. 7–9.  Table 1 shows R2

adj
and RMSE-values

or different combinations of descriptor variables, while the rela-
ionships between those variables and the amplitudes of the Fourier
Katun River Valleyhuya River Plain

. The location of these pixels is indicated by their corresponding symbol in Fig. 4.

components A0 and A8, are graphically presented in Fig. 7 (day),
Fig. 8 (night) and Fig. 9 (diurnal difference). Hardly any signifi-
cant explanatory power could be observed for potSRAD, not as a
single predictor, nor as an additional predictor variable (Table 1).
Consequently, potSRAD was  not included in Figs. 7 and 9. Never-
theless, with the four remaining predictor variables, between 74
and 87% and 36 and 66% of the variance in A0 and A8, respectively,
was explained. In Figs. 7–9,  nsnow, elevation and the CTI-index were
chosen as independent variables as they explained most of the vari-
ance in the Fourier components. As a result, iNDVI was  chosen as
color coding.

4.3.1. Day

Table 1 and Fig. 7B indicate a robust linear relationship between

A0,day and the duration of the snow cover (nsnow). Moreover, this
relationship shows the highest R2

adj
(0.85) and lowest RMSE (2.02)

for any single predictor variable. This relationship implies that an
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Fig. 6. Timing of the maximum in the maximum diurnal difference (A8,diff) in the study area. The locations of the six pixels, represented in Fig. 5 are marked by their
corresponding symbol.

Table 1
Statistics of the linear regression analysis between different combinations of physiographic variables (ranging from one up to five) and the amplitudes of the principal Fourier
components (A0, A8). R2

adj
and RMSE-values are listed for every possible combination of variables. Bold values correspond to the highest determination coefficient for a certain

number of variables (1–5).

Physiographic predictors A0,day A0,night A0,diff A8,day A8,night A8,diff

R2
adj

RMSE R2
adj

RMSE R2
adj

RMSE R2
adj

RMSE R2
adj

RMSE R2
adj

RMSE

Elevation 0.28 4.41 0.50 1.84 0.03 5.15 0.07 3.29 0.28 1.43 0.00 2.55
nsnow 0.85 2.02 0.08 2.50 0.60 3.31 0.18 3.09 0.14 1.57 0.16 2.33
CTI  0.30 4.33 0.00 2.61 0.31 4.35 0.30 2.86 0.40 1.31 0.12 2.39
iNDVI 0.03 5.12 0.47 1.89 0.02 5.16 0.00 3.43 0.00 1.69 0.01 2.54
potSRAD 0.05 5.07 0.03 2.57 0.09 4.97 0.00 3.42 0.01 1.68 0.00 2.55

Elevation, nsnow 0.86 1.98 0.52 1.81 0.66 3.04 0.20 3.06 0.30 1.41 0.22 2.24
Elevation, CTI 0.40 4.04 0.66 1.51 0.32 4.31 0.30 2.86 0.48 1.21 0.16 2.33
Elevation, iNDVI 0.42 3.96 0.65 1.54 0.34 4.23 0.39 2.67 0.56 1.12 0.19 2.29
Elevation, potSRAD 0.35 4.18 0.52 1.81 0.13 4.86 0.08 3.29 0.31 1.41 0.00 2.55
nsnow , CTI 0.86 1.91 0.10 2.47 0.64 3.12 0.35 2.76 0.41 1.29 0.22 2.24
nsnow , iNDVI 0.85 2.01 0.56 1.73 0.71 2.82 0.23 3.01 0.14 1.57 0.21 2.26
nsnow , potSRAD 0.85 1.98 0.13 2.44 0.64 3.15 0.19 3.08 0.14 1.56 0.17 2.32
iNDVI, CTI 0.34 4.22 0.48 1.88 0.39 4.09 0.34 2.78 0.41 1.30 0.16 2.33
iNDVI, potSRAD 0.09 4.95 0.48 1.88 0.11 4.93 0.00 3.43 0.01 1.68 0.00 2.54
CTI,  potSRAD 0.34 4.24 0.05 2.54 0.39 4.09 0.30 2.87 0.40 1.31 0.12 2.39

Elevation, nsnow , CTI 0.87 1.88 0.68 1.47 0.76 2.55 0.37 2.72 0.48 1.22 0.31 2.11
Elevation, nsnow , iNDVI 0.86 1.94 0.66 1.52 0.73 2.73 0.41 2.63 0.59 1.08 0.30 2.14
Elevation, nsnow , potSRAD 0.87 1.90 0.54 1.77 0.69 2.92 0.23 2.99 0.32 1.39 0.28 2.16
Elevation, iNDVI, CTI 0.46 3.83 0.72 1.37 0.44 3.91 0.46 2.52 0.64 1.02 0.24 2.22
Elevation, iNDVI, potSRAD 0.47 3.79 0.66 1.53 0.40 4.05 0.39 2.67 0.56 1.12 0.20 2.28
Elevation, CTI, potSRAD 0.45 3.86 0.67 1.51 0.39 4.09 0.29 2.87 0.50 1.20 0.16 2.33
nsnow , iNDVI, CTI 0.87 1.90 0.62 1.61 0.76 2.56 0.40 2.66 0.42 1.28 0.29 2.14
nsnow , iNDVI, potSRAD 0.86 1.97 0.58 1.70 0.73 2.74 0.26 2.94 0.14 1.57 0.26 2.19
nsnow , CTI, potSRAD 0.87 1.86 0.17 2.38 0.69 2.90 0.35 2.76 0.41 1.29 0.23 2.24
iNDVI, CTI, potSRAD 0.38 4.09 0.48 1.87 0.44 3.91 0.34 2.79 0.41 1.30 0.17 2.32

Elevation, nsnow , iNDVI, CTI 0.87 1.88 0.74 1.32 0.78 2.44 0.51 2.39 0.66 0.99 0.36 2.03
Elevation, nsnow , iNDVI, potSRAD 0.87 1.88 0.67 1.50 0.74 2.67 0.43 2.59 0.60 1.07 0.34 2.07
Elevation, nsnow , CTI, potSRAD 0.88 1.82 0.69 1.45 0.78 2.45 0.39 2.68 0.50 1.20 0.36 2.03
Elevation, iNDVI, CTI, potSRAD 0.50 3.68 0.72 1.37 0.49 3.74 0.46 2.51 0.64 1.01 0.25 2.20
nsnow , iNDVI, CTI, potSRAD 0.88 1.84 0.63 1.58 0.78 2.47 0.42 2.61 0.42 1.28 0.34 2.07

Elevation, nsnow , iNDVI, CTI, potSRAD 0.88 1.82 0.75 1.31 0.79 2.38 0.53 2.35 0.67 0.97 0.41 1.95



R. Van De Kerchove et al. / International Journal of Applied Earth Observation and Geoinformation 20 (2013) 4–19 13

Fig. 7. Scatterplots between the amplitudes of the principal Fourier components, and the physiographic variables for LSTday . The values of the pixels represented in Fig. 5 are
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ncrease in the number of snow days relates to a linear decrease in
he temporally averaged daily LST. Based on the slope of the regres-
ion fit, this means that if snow cover duration drops with 20 days,
0,day increases with 1.5 ◦C. Besides, it is demonstrated that high

NDVI values are restricted to those areas with snow days between
5 and 250 (Fig. 7B). As such, below and above these limits only low-
tature vegetation persist. Elevation shows a weaker relationship
ith A0,day: the triangular shape indicates that at lower altitudes, a
ide range of annual mean temperatures occur (Fig. 7A), partly due

o the amount of vegetation cover (iNDVI) with lower/higher tem-
eratures for high/low iNDVI-values, respectively. This interaction
etween vegetation cover and elevation on A0,day is demonstrated
y a R2

adj
-value which is higher than the sum of their individual

2
adj

(Table 1). Finally, also a slight positive connection between CTI
nd A0,day was retrieved, which demonstrates higher overall daily
emperatures for the topographical basins (Fig. 7C).

For the regression analysis between the predictor variables and
8,day, overall lower R2

adj
-values are obtained than for A0 (Table 1).

his implies more complex relationships. Nevertheless, in general,
8,day decreases with elevation (Fig. 7D) and nsnow (Fig. 7E), and

ncreases with CTI (Fig. 7F). As a single variable, CTI, was the best

xplanatory variable for the variance in A8,day with a R2

adj
-value of

.30. Fig. 7D also shows that, the general trend of a decreasing
8,day with increasing elevation did not hold true for high iNDVI val-
es. Actually, Fig. 7D demonstrates that temperatures at the same
altitude show higher seasonality if there is a low-stature vegetation
cover. Consequently, both variables experience strong interaction
effects as illustrated in Table 1.

4.3.2. Night
In contrast to the robust linearity during daytime, Fig. 8B shows

a more complicated relationship between nsnow and A0,night. A
negative correlation is still present for low iNDVI-values, but disap-
peared for higher iNDVI-values. These pixels display independency
to nsnow, and consequently other variables are required to predict
trends in A0,night. As such, elevation shows a higher correlation with
A0,night than with A0,day, indicating lower temperatures at night
with increasing altitude (Fig. 8A). Moreover, CTI enhances this rela-
tionship to a R2

adj
of 0.66, which is reflected in the small negative

deviations in the elevation-A0,night diagram, corresponding to high
CTI-values (Fig. 8A). This means that a pixel located in a topograph-
ical basin experiences overall lower night temperatures than pixels
at the same elevation but with lower CTI-values. In contrast to day-
time, iNDVI shows a strong, positive connection with A0,night which
results in a R2

adj
of 0.47.

For A8,night, similar relationships are found as during daytime,

with a higher R2

adj
for A8,night than A8,day. This means that the annual

amplitude at night also decreases at higher elevations (Fig. 8D),
with more snow days (Fig. 8E) and increases in topographical basins
(Fig. 8F). Once more, iNDVI and elevation show high dependency
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ig. 8. Scatterplots between the amplitudes of the principal Fourier components, a
re  marked by their corresponding symbols.

Table 1). With the four principal explanatory variables together, a
otal R2

adj
-value of 0.66 could be reached and a RMSE of less than

◦C.

.3.3. Diurnal difference
The major part (R2

adj
= 0.60) of the observed variance in A0,diff

ould be attributed to changes in nsnow. In fact, a longer snow cover
nduces overall lower A0,diff-values (Fig. 9B). Moreover, strong inter-
ction effects are observed between nsnow and iNDVI, which result
n relatively lower A0,diff-values for pixels with high iNDVI. Over-
ll, a multiple regression with the five variables shows a R2

adj
of

.79 and a RMSE of 2.38 ◦C (Table 1). In contrast, low explanatory
ower is observed between A8,diff and the set of physiographic pre-
ictors with a R2

adj
not reaching above 0.16 for a single predictor

nsnow).

. Discussion

.1. FFT applied on LST time series

This study exploits the possibilities of the FFT to analyze spatio-
emporal variability in remotely sensed LST. Hitherto, this method

as mainly restricted to NDVI time series (Azzali and Menenti,

000; Jakubauskas et al., 2001; Menenti et al., 1993; Moody and
ohnson, 2001; Roerink et al., 2000a; Lhermitte et al., 2008) and
ew studies have applied the FFT to LST time series (Julien et al.,
e physiographic variables for LSTnight . The values of the pixels represented in Fig. 5

2006). However, in this study, the FFT has shown to be particu-
larly useful to analyze LST time series. In fact, the ability of the
method to discriminate fundamental periodics, enables distinc-
tion between short-term weather components, and strong, climate
related, annual patterns. As such, it allows to extract mean and
annual climatologies. These climatologies can then be linked to dif-
ferent environmental parameters to understand their role on the
surface thermal regime. Moreover, this method has the advantage
to allow fast comparison between geographical areas, as the Fourier
components always express a certain periodicity (Lhermitte et al.,
2008).

Assessment of the spatio-temporal variability of the Fourier
components reflected the importance of the average (k = 0) and
annual signal (k = 8) in the original time series. These periodics cor-
respond to the relevant signals found by several authors in NDVI
time series (Lhermitte et al., 2008; Loyarte et al., 2008), although
this significance is closely related to the local climatic conditions,
as well as typical vegetation phenologies. As such, the FFT method
was successfully applied to analyze spatial variability in average
and annual climatologies. However, as stated by Wagenseil and
Samimi (2006) and Lhermitte et al. (2011),  care should be taken
as the assumption of a perfect sinusoidal signal is often not satis-
fied for the complex shape of ecosystem dynamics and FFT analysis

may  therefore require higher frequency terms. Consequently, the
annual climatology of time series determined by FFT analysis is an
approximation which will be less suitable if more shape modula-
tion of the annual signal is present in the time series. This is e.g.
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Fig. 9. Scatterplots between the amplitudes of the principal Fourier components, and the physiographic variables for LSTdiff . The values of the pixels represented in Fig. 5 are
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he case for barren pixels with a long lasting snow cover and a
hort but intense heating period. Furthermore, it is likely that in
ther areas, for example regions experiencing dry and wet sea-
ons, bi-annual and even higher frequencies explain significant
ercentages of the temporal variability in the original time series.
owever, these pronounced higher order harmonics are absent in

his particular LST-case, due to the extreme continentality of the
tudy area, with long and cold winters and relatively hot summers.

Several limitations of the FFT-method have to be taken into
ccount. The Fourier transform requires that signals, present in the
ata, are stationary, infinite in duration and the observation period

s large enough to detect them. As such, the method, applied on
-year time series, implies the assumption of steady state temper-
tures in the Russian Altay Mountains during the observed 8 years.
his means that trends in averaged annual temperature, either an
ncrease or decrease, as a change in the annual curve shape (exten-
ion/shortening of the seasons, shift in onset/offset of the growing
eason) cannot be detected by the method. Besides, also abrupt
hanges or discontinuities resulting from disturbance events are
eglected (Verbesselt et al., 2010). Hence, this method fails to
etrieve any signal changes, related to the global change prob-

ematic. This difficulty, was also encountered by Lhermitte et al.
2008), who proposed the application of the FFT on a yearly basis,
nd consequently consider the output differences between subse-
uent years. Despite these shortcomings, the main objective of this
study is to perform a quantitative analysis on the parameters defin-
ing spatio-temporal variability in LST. Therefore, the influence of
inter-annual variability, abrupt changes or weak trends are minor.

5.2. Relationships between Fourier components and
physiographic variables

The choice of appropriate physiographic variables is a subjec-
tive decision, which requires in-depth knowledge of the physical
processes in the specific study area. Previous studies (Pouteau
et al., 2011; Liu et al., 2006; Fu and Rich, 2002; Chuanyan et al.,
2005; Bounoua et al., 2000; Kaufmann et al., 2003; Julien et al.,
2006) made us test the influence of snow and vegetation cover and
the local topography on observed differences in calculated Fourier
components. Topography was further subdivided into three param-
eters (elevation, yearly potential solar radiation and the compound
topographic index (CTI)) to assess the influence of different topo-
graphical attributes. The CTI-index was used to evaluate the effect
of the strong air temperature inversions in the area on the surface
temperature regime, while the potential solar radiation (potSRAD)
was tested as an integrated effect of aspect and slope. Despite the

use of these five variables, other parameters such as land cover and
soil characteristics, might significantly contribute to the observed
spatio-temporal variability in LST. However, due to the relative
good fit of the regression models built with these five variables
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nd possible intercorrelation between land cover and iNDVI as sug-
ested by e.g. Reed et al. (1994),  other parameters were neglected
n our analysis.

Statistics from the multiple linear regression analysis illustrate
he strong predictive capacity of the models, which can conse-
uently be used for assessing the influence of the physiographic
ariables on the surface climatology. Moreover, these models allow
rediction of the response in surface climatology on changes in
hese variables. Especially, mean surface climatology, represented
y A0, is well estimated by the multiple linear regression models.
his is indicated by high R2

adj
and low RMSE-values. While a high

2
adj

(>0.7) can be reached with only one variable (nsnow) for A0,day,
ultiple variables are needed to reach the same result for A0,night

nd A0,diff. When the four variables (elevation, nsnow, iNDVI and CTI)
re used, predictions for mean day, night and diurnal difference
emperatures have a RMSE of 1.88, 1.32 and 2.44 ◦C, respectively.
nnual climatologies (A8) however, are slightly less well predicted
y the linear regression models which might be attributed to the
omplex shape of the original time series as described in 5.1.  Nev-
rtheless, R2

adj
-values of 0.51 and 0.66, and a RMSE of 2.39 and

.99 ◦C, for A8,day and A8,night, respectively, show that the model
ith the four variables is still rather accurate. In contrast, little

xplanation of the observed variance in A8,diff could be explained by
he set of physiographical variables used in this study. Partly, this
an be attributed to the lower contribution of the annual signal
o the total amplitude variance, which shows the greater impor-
ance of higher-order components. Consequently, LSTdiff shows a
ess pronounced annual signal and more noise compared to LSTday
nd LSTnight as for instance illustrated in Fig. 3B. This higher noise
evel originates from subtracting the two time series LSTday and
STnight and their corresponding white noise, which implies a new
ime series characterized by white noise with a greater variance
Marsaglia, 1965).

.2.1. A0
Observed regional differences in the average component (A0)

llustrate the combined effect of general, topography-related tem-
erature patterns as well as the effect of surface cover on the surface
hermal regime.

Topography controls surface temperatures by changing the air
emperature due to the environmental lapse rate (Oke, 1987). Con-
equently, as surface temperatures connect to air temperatures, LST
ends to decrease with increasing elevation. In the study area, this
ffect counts especially at night (Table 1) and as such corresponds to
he findings of Fu and Rich (2002) and Pouteau et al. (2011).  During
aytime, this effect was less present due to the greater importance
f surface cover effects. These effects at daytime are illustrated by
he significant amelioration produced in the linear regression mod-
ls when introducing the surface cover variables, nsnow and iNDVI
Table 1).

As such, snow cover duration shows a strong negative linear
orrelation with A0,day. This relationship is in accordance with the
ork of Bounoua et al. (2000) and Kaufmann et al. (2003), who

eported increasing temperatures on a continental scale coinciding
ith a reduction in snow cover extent. This increase is caused by the

ccompanied reduction in surface albedo, which enables a longer
xposure of the soil to direct solar radiation. This relationship was
he strongest observed in the Kosh-Agach region and implies that

 shift in snow season length would have a severe impact in the
egion. For instance, if the snow cover duration decreases with
0 days, which could be attributed to a more pronounced warm-

ng in spring, averaged daily surface temperatures would increase

ith 1.5◦. Conversely, temperatures will decrease if the snow sea-

on extends. The latter might be expected if winter precipitation
ncreases and spring temperatures remain at the same level. At
arth Observation and Geoinformation 20 (2013) 4–19

night however, the absence of direct solar radiation ceases the
linearity between nsnow and A0,night.

Vegetation cover has a strong dampening effect on mean LST.
Firstly, a strong positive connection exists in the study region
between the mean night temperature (A0,night) on the one hand, and
iNDVI on the other (R2

adj
= 0.47). This connection illustrates that

surface temperatures at night increase as vegetation gets denser.
These findings match the results from Van Leeuwen et al. (2011)
who reported that non-forested areas in the Brazilian state of Mato
Grosso experienced more cooling at night than forests. However,
they recorded minimal differences if moisture supply was  high. This
difference in cooling originates from the nocturnal drainage of air
from upper canopy layers towards soil level. As such, the canopies
of forest covers show relatively warmer nocturnal temperatures
(Goulden et al., 2006). However, this process of small scale temper-
ature inversions in forest covers cannot take place in short-stature
vegetation. Moreover, as in short-stature vegetation, LST is a com-
bination of both soil and canopy temperatures (Van Leeuwen et al.,
2011), a pocket of cold air, caused by the nocturnal radiative cooling
of the land surface, remains in contact with the canopy of sparse
and short-stature vegetation. Consequently, nighttime LST-values
of these vegetation types will be lower. Secondly, for mean day-
time temperatures (A0,day), the effect of vegetation is opposite with
lower daytime LST for dense vegetation covers than for sparse types
(Fig. 5A). A dense canopy efficiently blocks incident shortwave radi-
ation which prevents the surface from a significant temperature
increase during daytime. Furthermore, the amount of evapotran-
spirative cooling increases as vegetation gets more developed due
to their access to greater water resources (Van Leeuwen et al.,
2011). This effect is minor at night but can be more pronounced
if wind speed is high (Oke, 1987). However, this drop in daily LST
with an increasing vegetation cover, which has been reported as a
linear relationship during the dry season (Nemani et al., 1993), was
not observed in the relationship between A0,day and iNDVI (Table 1).
The main reason is that A0,day aggregates seasonal variation and as
such also encompasses the winter season where vegetation effects
are less important on the daytime temperature signal. Neverthe-
less, Fig. 7A clearly shows the strong buffering effect of vegetation
cover on the relationship between elevation and A0,day which is
reflected by their high interaction effect (Table 1).

Temperature inversions oppose the general tendency of
decreasing temperatures with increasing elevation, which results
in a strong bias in linear regression models if this parameter is
neglected (Lundquist et al., 2008; Pouteau et al., 2011). Continental
mountain systems in general, and the Altay Mountains in particu-
lar, are highly sensitive to such inversions. Especially in the basins
of Chuya and Kuray and on the Ukok plateau, cold air ponds itself
up at the valley floor and is reinforced by the katabatic flow from
the surrounding mountains. These inversions occur both seasonal
(during winter) and diurnal (at night) which results in relatively
low A0,night-values and a high annual temperature range. Hence,
the introduction of the CTI to linear regression models as a proxy
for the sensitivity to these temperature inversions, significantly
improves estimations of nocturnal and diurnal temperatures. It
however should be noted that CTI is built as a hydrological index,
and as such not completely intended to map  inversions. Never-
theless, CTI explains significant parts of the variance and as such
corresponds to Pouteau et al. (2011),  who  reported close connection
between CTI-values and frost risk assessment.

Finally, topography also determines LST due to regional varia-
tion in solar radiation loading. This implies that steep and north
oriented slopes get less solar radiation and exhibit lower tempera-
tures (Scherrer and Körner, 2010). However, in contrast to previous

studies (Chuanyan et al., 2005; Fu and Rich, 2002), no clear rela-
tionship was observed between potSRAD and any of the Fourier
components. This corroborates the findings of Daly et al. (2008)
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nd Pouteau et al. (2011) who found that that the effect of slope
nd insolation play an important role at local scale climatology,
ut diminishes as the region of interest increases. Therefore, it is
xpected that solar radiation would play a more significant role if
or instance an east–west oriented basin or valley system is taken
s study area.

The mean diurnal temperature range (A0,diff) compromises the
bove mentioned effects of snow and vegetation cover on day
nd nighttime LST and as such both variables and CTI explain
he major part of the variance in A0,diff. In general, diurnal differ-
nces decrease with increasing snow cover duration which can
e explained by the aforementioned surface temperature lower-

ng during daytime. Furthermore, if a pixel is characterized by a
now-free period, surface temperatures are more resistant to diur-
al oscillations as vegetation increases. This resistance is caused by
he relative surface warming at night and shading and evapotran-
pirative cooling during daytime. Moreover, as in this semi-arid
nvironments, higher vegetation types, typical reflect higher soil
oistures and a subsequently higher soil heat capacity, day–night

urface temperature differences are further reduced (Van Leeuwen
t al., 2011). This relation between vegetation-type and soil mois-
ure implies, together with the low precipitation amounts and high
vaporation rates in the study area, the importance of snow cover in
he water supply. As such, a clear relationship between vegetation
onation and snow cover as reported by Kozlowska and Rackowska
2006),  can be retrieved, with high iNDVI-values restricted between
5 and 250 snow days. Below 75, soil moisture supply is insuffi-
ient to enable a well-developed vegetation cover. Furthermore,
he absence of a stable snow cover, also denotes that these pix-
ls experience more low-temperature events, which reduces above
round growth as diagnosed by Wipf et al. (2009) on a alpine tundra
ite. Consequently, species characterized by winter frost hardiness
steppe taxa) will dominate these areas. Above 250, the growing
eason is too short to enable extensive grow.

.2.2. A8
Annual amplitudes calculated by the FFT are more difficult to

nderstand as they aggregate the above mentioned effects. In gen-
ral, the same image is found during daytime and nighttime which
hows that to some extent the same processes explain the observed
ariance in A8. Nevertheless, relationships between the explana-
ory variables and the nocturnal annual amplitude are stronger and
s such demonstrate the influence of solar radiation on the annual
ignal.

CTI is the physiographic variable which explains most of the
ariance in A8 (day and night). This significance of CTI is related to
he aforementioned temperature inversions which are vast winter
henomena which creates persistent relatively low negative tem-
eratures in the valley systems of the Altay Mountains. On the other
and, summer temperatures are much warmer in these systems
ue to their lower altitude.

Although vegetation shows a strong buffering on the annual
ST signal as stipulated by Bounoua et al. (2000) and confirmed
y Kaufmann et al. (2003) and Jeong et al. (2009),  at first sight, no
uch trend could be reported in the study area. The primary rea-
on for this is the presence of low iNDVI-values both in the lower
rid steppe-areas as at high elevated pixels. While the former cor-
esponds to high A8,day and A8,night-values, perennial snow or brief
now-free periods result in low annual amplitudes at the latter.
otwithstanding this, similar to the variation observed in A0,day,

trong interaction is observed between iNDVI and elevation. As
uch, vegetation cover shows its buffering capacity at lower ele-

ations where it dampens the general trend of increasing annual
mplitude with decreasing elevation Figs. 7D and 8D.  However,
t has to be noted this general trend might be strongly related to
ase-specific regional variability in snow and land cover.
arth Observation and Geoinformation 20 (2013) 4–19 17

Finally, little predictive power was achieved by the linear regres-
sion model for A8,diff (see Section 5.2). Despite this, an interesting
observation was  made concerning the difference in timing of the
maximum diurnal range. In general, for the gross of the study area,
this maximum occurred in early summer, shortly after the snow
cover disappeared. Hence, this timing coincides with the removal
of the buffering snow layer and precedes the grow of a well-built
vegetation cover. As a result, the soil is subject to both strong heat-
ing during daytime and fast cooling at night. Contrary, perennial
snowfields remain their buffer layer throughout the year although
a significant change in physical properties is observed in summer:
at first, due to a strong radiative forcing, snow is melting, which
happens even on the highest peaks of the Altay Mountains. This is
reflected in surface temperatures which are both during daytime
as at night close to 0 ◦C, as illustrated e.g. in Fig. 5A and B. Because
of this melt, snow grain size increases which subsequently creates
a drop in albedo and thus enhances solar radiation absorption (Hall
et al., 2008). Secondly, melting snow requires latent heat, which
transforms the upper part of the snowpack isothermal, which in
turn lowers the sensible heat flux. As this second effect domi-
nates the increased absorption of shortwave radiation, this melting
period corresponds to the annual minimum in the diurnal temper-
ature difference.

5.3. Spatial variability and implications for the Russian Altay
Mountains

The steppe areas, characteristic for the topographical basins in
the Kosh-Agach Region and great parts of north-west Mongolia,
are extreme ecosystems which exhibit very strong annual oscil-
lations. These ecosystems originate from the lack of available soil
moisture, and are therefore typically confined to the valley bot-
toms. As these topographical settings are subject to strong winds,
no stable snowpack is able to built up during winter. Together with
the lack of precipitation in the region, this means that insufficient
soil moisture is available to enable extensive grow. Consequently,
steppe taxa, which can endure soil moisture deficits and extreme
temperature events, due to the severe temperature inversions, will
dominate these areas. In turn, this steppe vegetation is marked
by limited surface shading and therefore prone to strong surface
heating during daytime in snow-free periods. In contrast, these
environments are also subject to more pronounced nocturnal radia-
tive cooling in summer due to the absence of a protective cover.
Despite their uniform appearance, significant regional differences
can be detected between different steppe zones. For instance,
significantly lower annual day and (to lesser extent) nighttime
amplitudes are observed in the Mongolian steppe when compared
to the Chuya and Kuray steppes (Fig. 4B and D). This difference in
A8,day and A8,night can be attributed to far more extensive temper-
ature inversions which occur in the Russian basins which result
in much lower temperatures during winter, although summer LST
values are alike (Fig. 5A and B). Secondly, despite overall high
values in A0,diff, the annual amplitude of the diurnal difference is
much lower in the Mongolian Steppes. This effect is ascribed to the
absence of snow cover in this Mongolian steppe which contrasts
with considerable snow duration in the Russian steppes (Fig. 2B).
As a result, no winter buffer layer is present in the former which
prevents the surface from significant diurnal fluctuations (Fig. 5C).
Hence, these areas show smaller annual oscillations opposed to e.g.
the Chuya Steppe where diurnal temperature differences drop in
winter below 10◦.

Although located 500 m above the Chuya Steppe, very similar

conditions are retrieved on the Ukok Plateau. This high elevated
plateau, is surrounded by high mountain ranges and as a conse-
quence also prone to severe temperature inversions. On the other
hand, summer temperatures (both day and night) are somewhat
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ower on this plateau (Fig. 5A and B), which can be explained by
he environmental lapse rate. This difference is reflected in lower
0 and A8-values compared to the Chuya Steppe.

If sufficient soil moisture is available, low shrubs or even conif-
rous forests are able to develop in the region. This soil moisture
an be related to higher precipitation amounts or the proximity of

 stream, which is for example the case in the Katun River Valley
ocated in the northwest of the study area (dominated by conif-
rous forests), and in the Chuya River Plain (a stretch of fertile
and covered with dwarf willows and moist grass in the middle
f the semi-dessert). Thanks to their access to water and sur-
ace shading, these regions are protected to strong heating and
ooling, which is reflected in much more moderate surface temper-
tures. However, as canopy density is much larger for coniferous
orests, this effect is more pronounced in the northwest. More-
ver, little effect of this protective cover is observed in the winter
emperatures at the Chuya river. Finally, at high mountain ranges,
erennial snow acts as an efficient buffer against strong, both
iurnal and annual, heating and cooling. Consequently, a removal
f this snow layer would have a dramatic effect on the surface
emperature.

. Conclusion

In this study the ability of the fast Fourier transform to discrimi-
ate between high frequency noise and fundamental periodics was
sed. As such, strong, climate related periodic patterns, could be
eparated from short-term weather signals. This allowed to assess
he influence of five physiographic variables by multiple regression
nalysis on the spatio-temporal variability, observed in 8 years of
STday, LSTnight and LSTdiff-time series in the Russian Altay Moun-
ains. Most of the temporal variance was constrained to the average
A0) and annual signal (A8) which is explained by the continental-
ty of the study area. Snow cover duration showed a strong inverse
elationship with the averaged diurnal difference and daytime
ST, caused by the high albedo of the snow cover, which reduces
he absorption of shortwave radiation. Nocturnal average LST was

ainly influenced by the environmental lapse rate and the vegeta-
ion cover which prevents strong radiative cooling. The amplitude
f the annual daytime (A8,day) and nighttime (A8,night) signal showed

 strong connection with CTI which demonstrates the importance of
evere temperature inversions in the region. Furthermore, also the
ombined effect of vegetation and elevation explained large parts
f the variance in A8,day and A8,night. However, limited connection
as retrieved between A8,diff and the set of physiographic variables,

lthough a significant difference in temporal behavior was  noticed
etween the majority of the study region and the perennial snow-
elds. The latter can be attributed to the summer snow melt of the
pper layers which reduces the diurnal range. Based on the results
rom the FFT and multiple regression analysis, it was  possible to
ifferentiate the steppe zones, characterized by extreme tempera-
ures, from the more moderate forests, river valleys and perennial
nowfields, which are buffered by their surface cover and moisture
upply.
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