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Interannual changes of vegetation are crucial in understanding ecosystem dynamics under global change. How-
ever, there is no automated tool to extract these interannual changes from remote sensing time series. To fill this
gap, the Ensemble Empirical Mode Decomposition (EEMD) framework was refined and implemented to decom-
pose time series of Normalized Difference Vegetation Index (NDVI) and reconstruct their interannual compo-
nents. The performance of EEMD-based interannual NDVI detection was assessed using simulated time series,
and its sensitivity to model and data parameters was determined to provide a basis for remote sensing applica-
tions. The sensitivity analysis highlighted application limitations for time series with low interannual to annual
amplitude ratios and high irregularity in timing of growing seasons, as these factors have the strongest effects
on the overall performance. However, within these limitations, the detected interannual components correspond
well to simulated input components with respect to timing of episodes and composition of time scales. The ap-
plicability on real world NDVI time series was demonstrated by mapping the coupling between precipitation var-
iability, interannual vegetation changes, and the El Nifio Southern Oscillation and Indian Ocean Dipole
phenomena for ecoregions in East and Central Africa. In most areas where precipitation was found sensitive to
oceanic forcing, the EEMD detected vegetation changes matched the predicted response, except in dense forest

ecosystems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Interannual changes in vegetation cover and productivity are key to
understanding the impacts of global climate change on ecosystem dy-
namics (Hilker et al., 2014; Luo et al., 2011). Such year to year variations
in vegetation status critically influence ecosystem services such as ter-
restrial carbon sequestration (Piao et al., 2011) and regulation of the hy-
drological cycle (Liu et al., 2008). However, the response of vegetation
to climatic anomalies is often ambiguous (Brando et al., 2010), variable
across ecosystems (Holmgren, Hirota, van Nes, & Scheffer, 2013; Piao
et al,, 2014) and subject to critical transitions at tipping points (Hirota,
Holmgren, Van Nes, & Scheffer, 2011). Therefore its quantification re-
quires dedicated monitoring tools.

Satellite remote sensing is an excellent tool to assess land ecosystem
dynamics as it provides periodic, spatially explicit and consistent mea-
surements of biophysical processes at the Earth's surface (Baynard,
2013). It has become an established monitoring instrument in the fields
of forestry (Achard et al., 2002), agriculture (Atzberger, 2013) and plant
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ecology (Xie, Sha, & Yu, 2008). Several vegetation indices and biophys-
ical parameter products have been derived over the past 35 years from
different satellite sensors, e.g., NOAA-AVHRR (Cracknell, 2001), SPOT-
VGT (Maisongrande, Duchemin, & Dedieu, 2004), MODIS (Huete et al.,
2002) and PROBA-V (Dierckx et al., 2014). A key product in these
datasets is the Normalized Difference Vegetation Index (NDVI) which
highlights vegetation greenness and photosynthetic activity (Tucker &
Sellers, 1986). The combined data archives form a unique long term
NDVI record which has been used in numerous studies dealing with
the effects of climate variability on vegetation status in space and time
(e.g., Fensholt et al., 2012; Guo et al., 2014).

This paper proposes and validates a framework for a tool to detect
interannual NDVI fluctuations, by considering the ensemble of past ef-
forts in remote sensing data processing and introducing promising ad-
vances from another domain of science, i.e., signal processing.

Early approaches accounted for interannual variability in time series
implicitly without explicitly separating the interannual component. In
pioneer works (Anyamba & Eastman, 1996; Nicholson & Farrar, 1994;
Richard & Poccard, 1998), the forcing role of climate variability on
NDVI was explored by spatial representations of the (lagged) correla-
tion between mean monthly or annual NDVI values and corresponding
aggregate rainfall values. This principle of lagged linear response was
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further explored in a simple linear regression approach (Camberlin,
Martiny, Philippon, & Richard, 2007; Zhou, Van Rompaey, & Wang,
2009; Zhou et al., 2014a), whereas other authors (De Keersmaecker
et al.,, 2015; Myneni, Los, & Tucker, 1996; Plisnier, Serneels, & Lambin,
2000) introduced the use of standardized anomalies from the average
annual season as the key to reveal interannual variability. Brown, de
Beurs, and Vrieling (2010) elaborated this notion of climatic forcing at
multiple interannual time scales, supported by an increasing insight in
the mechanisms and the effects of regional climate oscillations
(Holmgren, Scheffer, Ezcurra, Gutiérrez, & Mohren, 2001; Nicholson &
Kim, 1997; Williams & Hanan, 2011).

Other tools have been developed to explicitly separate different
time scale components in NDVI time series using techniques from
the signal processing domain. Methods range from Fourier spectral
analysis (Immerzeel, Quiroz, & De Jong, 2005; Lhermitte et al.,
2008; Roerink, Menenti, Soepboer, & Su, 2003) and wavelet analysis
(Torrence & Compo, 1998) to specific tools to detect, separate and
model intra-annual variability, long term trends and abrupt changes
from satellite image time series: TIMESAT (Jonsson & Eklundh,
2002), BFAST (Verbesselt, Hyndman, Zeileis, & Culvenor, 2010) and
SPIRITS (Eerens et al., 2014).

Despite this wide range of tools, there is no quantitative method that
focuses on interannual fluctuations, which we believe are crucial in un-
derstanding and predicting the response of ecosystems to an increasingly
variable climate. For example, Fourier analysis methods generally focus
on mapping the occurrence of annual unimodal or bimodal growing sea-
sons to distinguish land use patterns (e.g., Lhermitte, Verbesselt,
Verstraeten, & Coppin, 2011), while longer time scales are only represent-
ed as harmonic frequencies which are not variable over time. Wavelet
analysis provides a more flexible technique to detect interannual compo-
nents which are themselves variable over time, beyond the static and
strictly harmonic Fourier framework. It has therefore been applied in nu-
merous studies to identify interannual components in NDVI and climatic
time series (Galford et al., 2008; Martinez & Gilabert, 2009; Quiroz,
Yarlequé, Posadas, Mares, & Immerzeel, 2011). Swinnen (2008) used
wavelet coherency, a form of cross-spectral analysis (Torrence &
Webster, 1999) to systematically examine the climate-vegetation cou-
pling over all occurring time scales in the time-frequency domain.

However, a generic tool to study interannual NDVI components
must yield easily interpretable components in the time domain, so as
to not impose constraints for further processing (e.g., co-analysis with
climatic series), and to allow integrated use with other time series tool-
boxes. An answer to the need of breaking down an NDVI series into dif-
ferent time scale components while preserving the time domain
flexibility of the wavelet approach is found in the Empirical Mode De-
composition (EMD) methodology, proposed and elaborated by Huang
and colleagues in their key publication (Huang et al., 1998). The EMD al-
gorithm (summarized in Section 2.2, and detailed in Appendix A) itera-
tively extracts the intrinsic time scales from the series, yielding a finite
set of components with decreasing frequency and a residual trend com-
ponent. EMD has been applied to climatic or biogeophysical time series
to analyze climate variability in general (Coughlin & Tung, 2005; Molla,
Ghosh, & Hirose, 2011; Pegram, Peel, & McMahon, 2008), to model slow
components in climate simulations (Brisson, Demuzere, Willems, & van
Lipzig, 2015), to assess climatic effects on plant phenology (Guan,
2014), to aid crop classification (Chen, Son, Chang, & Chen, 2011) and
to remove the effect of platform orbital drifts in cross-sensor image
time series (Pinzon, Brown, & Tucker, 2005).

EMD and its extension Ensemble Empirical Mode Decomposition
(EEMD; Wu & Huang, 2009) are straightforward as a decomposition al-
gorithm, except for the procedure to sort ensembles of components
lacking explicitness, which we tackle in this paper. However, processing
EEMD components to robust indicators of interannual variability has
not been addressed yet and faces a number of problems. First, the
capability of assigning components to their underlying physical pro-
cesses (e.g., noise, annual climatology) has been demonstrated ad hoc

(Coughlin & Tung, 2005), but has not been formalized to make it appli-
cable for systematic processing of large spatiotemporal datasets. Sec-
ond, distinguishing significant signal components from noise-induced
components critically determines the method's performance and the
conclusions that can be drawn from its output. Significance tests for
(E)EMD components exist but lack validation, which is a prerequisite
for a generic processing tool.

The overall aim of this work is to introduce the EEMD technique in
remotely sensed image processing applications, and to propose a frame-
work for its implementation and validation. More specifically, the objec-
tives of this paper are:

- To define a robust procedure based on EEMD to separate interannual
components in remotely sensed NDVI time series from annual and
noise components;

- To assess the performance of this procedure and its sensitivity to
EEMD model parameters and characteristics of the input time series;

- To demonstrate its applicability in a case study over East and Central
Affica.

Based on the hypothesis that climate variability is reflected in NDVI
time series as relatively weak, irregular and slow fluctuations, we com-
posed simulated time series containing annual, interannual and noise
components. In this way, we set up a validation framework in which
the interannual component detected after decomposition can be com-
pared to the original input component. After this validation, we assess
the representativeness of our simulations for real world situations by
examining the detected interannual NDVI response to precipitation in
East and Central Africa. In the areas where precipitation is sensitive to
regional climate variability, a corresponding vegetation response is ex-
pected in ecosystems with limiting precipitation.

2. Data and methods

A remotely sensed NDVI dataset spanning the 1981-2014 period
and covering a wide range of climate types and ecosystems (East and
Central Africa) along with series of historic climate indices were used
to set up a framework to test and validate the envisaged tool for interan-
nual component detection. We adopted the Ensemble Empirical Mode
Decomposition (EEMD) to obtain a per-pixel estimate of the constituent
components of NDVI series. These estimates were used to simulate an-
nual, interannual and noise components with controlled variation of
their parameters. A set of mixtures of simulated components were
decomposed using EEMD, and the interannual components were recon-
structed by three distinct approaches. Measures of correspondence be-
tween the input and output interannual components were calculated
to evaluate the performance and sensitivity to various EEMD model pa-
rameters, data characteristics and reconstruction methods. Finally, the
validated method was applied on the original NDVI dataset and historic
climate indices in a regional case study.

2.1. Data

2.1.1. Remote sensing datasets

The Normalized Difference Vegetation Index (NDVI) is defined as
the normalized difference in surface reflectance (Refl) in the near-
infrared (NIR) and red (R) wavebands of a sensor and is considered to
be a proxy for vegetation greenness (Tucker & Sellers, 1986).

NDVI = (Reflng—Reflg)/(Reflni + Reflg) (1)

Various efforts have been made to produce consistent long term
NDVI records from sensor sequences, each with their particular merits
and flaws (Tian et al., 2015). Within the setup of this paper, residual in-
consistencies in the baseline dataset do not fundamentally affect the
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data simulations or the validation results produced from them. There-
fore, this section is limited to a description of the underlying datasets
whereas the implications of data inconsistencies are discussed at length
in the discussion section of this paper.

NASA's Long Term Data Record (LTDR) contains the reprocessed
daily global AVHRR imagery from subsequent NOAA platforms (1981-
1999 in version 2; extended with 2001-2013 in version 4), at 0.05°
resolution. The LTDR reprocessing aims to achieve data consistency
through both improved radiometric calibration (Vermote & Kaufman,
1995), corrections for orbital drift effects (Nagol, Vermote, & Prince,
2014; Vermote, Justice, & Breon, 2009) and atmospheric corrections
with ancillary meteorological data (Pedelty et al., 2007).

The SPOT-VEGETATION (VGT) program (1998-2014) delivered
global NDVIimages of 1 km resolution as ten-daily maximum NDVI syn-
thesis products as to minimize cloud effects present in daily recordings
(Deronde et al., 2014). Residual clouded pixels typically cause sharp
troughs in temporal NDVI profiles. These are detected and their values
replaced by means of an NDVI interpolation algorithm (Eerens et al.,
2014; Swets, Reed, Rowland, & Marko, 1999) to represent a more real-
istic smooth temporal NDVI profile.

One approach to obtain a long uninterrupted baseline dataset is to
merge the VGT archive (1998-2014) with the first part of the LTDR ar-
chive (1981-1999). Both image datasets were resampled to a common
systematic 20 km frame and subjected to the same synthesis and
smoothing procedures to yield comparable NDVI series. Finally, cross-
sensor calibration reduces the inconsistencies between NDVI from the
AVHRR and VGT sensors caused by differences in sensor spectral re-
sponses (Trishchenko, Cihlar, & Li, 2002), native spatial resolutions
(Tarnavsky, Garrigues, & Brown, 2008), platform orbits and sensor ge-
ometries (Swinnen & Veroustraete, 2008). Empirical cross-sensor cali-
bration was achieved following the linear VGT-to-AVHRR correction
model proposed by Steven, Malthus, Baret, Xu, and Chopping (2003).
We re-estimated the correction equation from corresponding pixels in
images from 1999, applying geometric mean regression (Ji & Gallo,
2006).

NDVIayrg = 0.799 NDVIycr + 0.081(RMSE = 0.069 NDVI) 2)

2.1.2. Climate data

Interannual climatic variability is represented in this study by two
climatological indices which have been linked to interannual rainfall
patterns in East and Central Africa (IPCC, 2007). The Oceanic Nifio
Index (ONI) (NOAA-CPC, 2014) represents sea surface temperature
anomalies in the Pacific Ocean (ERSST v4; Huang et al., 2014) and is
the most widely used indicator for the episodes of the El Nifio Southern
Oscillation (ENSO), which are known to have impacts globally. In addi-
tion, East Africa's rainfall is largely driven by the Indian Ocean dynamics,
which as well display interannual episodes as summarized in the Indian
Dipole Mode Index (DMI) (JAMSTEC, 2010). This is the difference in sea
surface temperature anomalies between the western and eastern equa-
torial Indian Ocean. Monthly values for both indices were smoothed
with a 12-month running window in order to obtain an estimate of
the interannual climatic forcing (Fig. 1).

Gridded precipitation estimates derived from satellite observations
(1983-2012) are obtained from the PERSIANN system (Sorooshian
et al., 2000). The PERSIANN system merges infrared brightness images
with rainfall estimates from satellite microwave data to daily 0.25° pre-
cipitation maps, with error detection and quality control using ground
observations (Hsu, Gupta, Gao, & Sorooshian, 1999).

2.2. Ensemble EMD decomposition model
For a detailed description of the basic EMD model, we refer to Huang

et al. (1998), whereas the algorithmic implementation and its parame-
ters are described in Appendix A. Briefly, EMD works by connecting
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Fig. 1. The Oceanic Nifio Index (ONI) and the Dipole Mode Index (DMI) are derived from
sea temperature measurements and represent the positive and negative episodes of cli-
mate oscillations that affect interannual rainfall patterns over East and Central Africa
(IPCC, 2007).

local maxima (minima) in a series X (t) by a cubic spline which yields
upper (lower) envelopes. The time series minus the mean of the
upper and lower envelopes contains the high frequency information.
In a process termed sifting, the above steps are repeated to remove re-
sidual low frequency information until the number of extrema and
zero-crossings does not change for S consecutive siftings. The outcome
is a component of the original series that isolates a specific frequency
of the series, termed an Intrinsic Mode Function (IMF). The residual of
the data and a detected IMF is again subjected to the sifting process to
iteratively yield a set of k IMFs (IMF; — ) with decreasing frequency,
until a final residual term R (t) has less than two local extrema.

X(t) = Y IMFi(t) +R() (3)

Although powerful, basic EMD often leads to one time scale inter-
mittently partitioned over two or more IMFs, an issue referred to as
mode mixing (Huang, Shen, & Long, 1999), illustrated in Fig. 2a. To
cope with mode mixing, Wu and Huang (2009) proposed Ensemble
EMD (EEMD) as an extension to the method. By iteratively adding a fi-
nite amount (0,qq) of Gaussian white noise to the series, applying
EMD to the mixture, grouping corresponding IMFs into ensembles,
and averaging each ensemble of IMFs over a large number N, of noise
realizations, mode mixing is largely eliminated (Fig. 2b).

Although EEMD was applied recently by various authors (e.g., Feng,
Liang, Zhang, & Hou, 2012; Guan, 2014; Kuo, Wei, & Tsai, 2013; Zhou,
Jiang, et al., 2014b), no formal definition of corresponding IMFs, required
to sort them into ensembles, has been given. However, automated
EEMD analysis of a large array of per-pixel NDVI time series requires a
robust sorting procedure, certainly because different noise realizations
can yield slightly different numbers of IMFs, and assigning each IMF to
its appropriate group (or bin) before averaging is crucial in attaining
successful mode separation. To formalize the IMF sorting step, we pro-
pose to use IMF periods p; (i.e., the series length divided by twice the
number of zero-crossings in IMF;) as the basic criterion, where the EMD
decomposition of the original series without added noise defines refer-
ence periods Pref 1,...,.Pref. Since EMD is found to produce components
with a general pattern of doubling (or exponentially growing) periods
(Flandrin, Rilling, & Goncalves, 2004; Wu & Huang, 2004), the geometric
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Fig. 2. A temporal NDVI profile (pixel 7 in Fig. 3, North Tanzania) and its Intrinsic Mode Functions by (a) EMD decomposition and (b) the improved EEMD decomposition. EEMD decreases
‘mode mixing’ whereby fragments of a single time scale occur in another component, e.g. for the annual time scale for the period 1984-1986 (box on graph (a)).

means of subsequent reference periods pye; are considered as the bin
boundaries for assigning IMFs to a bin after each noise realization.

bin; = [\/pref_j—lpref_jv \/pref.jpref.jH] (4)

The sorting algorithm thus evaluates the IMFs of each noise-
distorted ensemble member, and assigns them to their proper pre-
defined period bins. The IMFs in a bin are then averaged over the num-
ber of noise realizations N,,, to yield a decomposition with better mode
separation. Our implementation uses parameter values for added noise
amplitude [03q¢ =0.1] as in other EEMD applications (Kuo et al., 2013;
Wu & Huang, 2009) and [N,, = 50] since the slight differences in out-
comes for higher N, did not offset linearly increasing processing time.

2.3. Simulated time series

Our central hypothesis is that observed NDVI time series are com-
posed of an annual component encompassing one or two growing sea-
sons, an interannual component including climatic influence as well as
residual effects of sensor merging and orbital drift, and a high-
frequent noise component reflecting residual sensor noise, radiometric
and geometric errors (Lhermitte et al., 2011). Each of these components
can be present in varying amplitude levels and under varying degrees of
irregularity in timing. For the sensitivity analysis of the EEMD model's
performance to be representative and the detection method to be ge-
neric, these forms of variability must be parameterized and the param-
eter ranges be estimated from a real NDVI dataset, here the
intercalibrated AVHRR/VGT dataset described in Section 2.1.1.

2.3.1. Study area stratification

Fig. 3 shows the study area represented by each pixel's mean NDVI
value (1) over the entire series, thereby revealing the major
ecoregions in East and Central Africa. The series of 9 pixels with distinct
NDVI levels and seasonal profiles were selected across climatic regions
to optimally explore parameter ranges related to NDVI data. Fig. 4 de-
picts cross-calibrated temporal NDVI profiles derived from the com-
bined AVHRR and VGT datasets for this set of pixels.

2.3.2. Estimation of variability in annual, interannual and noise components
Without any prior knowledge of relative signal amplitudes in real
NDVI time series, a first estimate was made from their respective

IMFs. The IMFs resulting from EEMD of each of the nine series were
grouped into noise IMFs, annual IMFs and interannual IMFs, following
the bin boundary logic as described in Section 2.2. Considering the oc-
currence of bimodal growing seasons, 0.5 year and 1 year are taken as
the theoretical periods for annual cycles. As IMFs normally fall within pe-

riod bins of doubling frequencies, the bin boundaries are set at 0.5/v/2

years and 1.0 v/2 years. Shorter period IMFs are labeled as noise, whereas
the sum of longer period IMFs is a first representation of the interannual
component. The amplitude of each component is calculated as its stan-
dard deviation (o). Furthermore, mean NDVI values () and the num-
bers of modes in the average yearly growing season were tabulated per
series (Table 1). Three prototypes of NDVI seasonality were identified
for further modeling: a weak bimodal season with high NDvI "1
(humid conditions, e.g., East DR Congo), strongly seasonal unimodal sea-
son ) (subhumid conditions, e.g., North Tanzania), and an erratic bimod-
al season with low NDVI OV (semi-arid conditions, e.g., East Ethiopia).

2.3.3. Annual component

Growing seasons generally appear as peaks in NDVI time series, with
a certain degree of irregularity. A flexible parametric model for a season-
al NDVI peak was adopted from Jonsson and Eklundh (2002). Its basic
approach is to fit an asymmetric Gaussian model function f(t), defined
by its base level b, peak position p and amplitude A, and the width
wi r and flatness fj , of both tails (see Eqs. (5) and (6)). This approach
was expanded to the case of bimodal growing seasons which are
modeled as two additive peaks with different peak locations within
the year. A unimodal or bimodal peak was thus fitted to each of the 31
growing seasons of the three prototype series spanning 1981 to 2012.
Sample means and standard deviations (n=231) give an account for
the expected values and natural variation of the seasonal parameters
throughout the study area (Table 2). These sample statistics were
used to generate simulated annual components as a function of time
f(t) with realistic shapes (base level, amplitude, peak widths and flat-
ness) and controlled variation in irregularity (peak positions).

f(t) =b+Ag(t) (5)
exp|—((t—p)/wp"'|;if p

ith g(t) =
e { exp| —(t—p)/wn)" | t<p
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Fig. 3. Mean NDVI value over the period 1981-2012 per image pixel over East and Central Africa. The square symbols indicate the locations of the selected pixels, used to estimate param-
eters for NDVI time series simulation (Table 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For each of the seasonality types, sequences of growing seasons
were generated with their respective mean values of base level, ampli-
tude and peak positions, widths and flatness. Seasonal irregularity
(@seas) Was introduced by adding a random variation of 0.0, 0.5, 1.0
and 1.5 times the standard deviations for the respective peak positions.

2.34. Interannual component

Realistic and representative a priori simulations of interannual vari-
ability are more difficult to obtain, since they are the outcome our tool
aims to deliver. Therefore we combine descriptions found in literature
on the impact of interannual climate variability on vegetation with

1981 1985 1990 1995 2000 2005 2010 2012
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| 2.Somalia 4]
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Fig. 4. Time series of the Normalized Difference Vegetation Index (NDVI) for 9 pixels in distinct climate zones in East and Central Africa (Fig. 3), derived from cross-calibrated image data
from the NOAA-AVHRR (1981-1999) and SPOT-VGT (1998-2012) satellite sensors. Three prototypes of growing seasons were selected for data simulations: (*)unimodal (one rainy sea-
son) and (**)bimodal (two rainy seasons) with either overall low (L) or high (H) NDVI levels.
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Table 1

Estimated parameters for the time series of 9 selected pixels: amplitudes of noise (Gpeise), annual (0a,,) and interannual (0i,c) components, total amplitude (Oyo) and mean value (L) of
the series, and the number of modes in the annual growing season. Three prototype seasons for further modeling are labeled as unimodal ¢ with strong seasonality and bimodal ) with

low ™ and high ™ NDVI.

Location Otot Onoise Oann Oine Oint/Oann Htot #modes
1. Sudan 0.14 0.02 0.12 0.03 0.27 0.35 1
2. Somalia 0.02 0.01 0.01 0.02 1.09 0.20 2
3. E Ethiopia **1) 0.04 0.02 0.03 0.02 0.66 0.24 2
4. Kenya 0.09 0.01 0.07 0.05 0.64 0.29 2
5. E DRCongo (**H) 0.06 0.03 0.04 0.03 0.74 0.70 2
6. Rwanda 0.07 0.03 0.04 0.03 0.69 0.54 2
7.N Tanzania *) 0.10 0.01 0.10 0.02 0.19 0.39 1
8. S Tanzania 0.17 0.02 0.15 0.03 0.22 0.47 1
9. Zambia 0.12 0.03 0.11 0.03 023 053 1

our additive hypothesis and with the estimated levels of variability from
the model series set of our study area. The major coupling between cli-
matic variability and vegetation phenology is thought to act through ep-
isodes of severely increased or decreased precipitation (Holmgren et al.,
2013). One well-known cause of such episodes is the El Nifio Southern
Oscillation (ENSO), a recurrent climate phenomenon at a 3 to 7-yearly
time scale (IPCC, 2007) which is known to force vegetation growth be-
yond its seasonal cycle (Holmgren et al., 2013). Although the interac-
tions are complex in nature and region dependent (Sitters, Holmgren,
Stoorvogel, & Lopez, 2012), increased precipitation episodes generally
cause a rapid, but lasting response over several years (Holmgren et al.,
2001).

Within the limitations of our additive model, we thus represent
climate-driven interannual variability in NDVI as a weak modulation,
with a steep increase and a relative slow decline. We employ again
the asymmetric Gaussian simulation model to control the correspond-
ing parameters. ENSO peak positions (toy;) and peak-to-peak amplitude
variations (Agn;) were derived from the historic ONI series, to recon-
struct historic ENSO episodes and estimate the natural variability in du-
ration of episodes (L.oni; Or.oni) for the simulation of irregular episodes
with relative magnitudes ranging from 1 to 3 (R;_3). Table 3 lists the
resulting set of interannual models. The overall interannual amplitude
levels (Ain:) were defined as fractions of the annual amplitude (0yy/
Oann ), Which were in turn estimated from the interannual IMFs obtained
by EEMD decomposition of the NDVI model series set. Based on the
range of estimated annual/interannual ratios in Table 1, this parameter
takes on values 0.1, 0.2, 0.33, 0.5 and 1.0 in the simulations.

2.3.5. Noise component

Real world NDVI noise levels (Op0ise) Were estimated as the root
mean square (rms) amplitudes of the sum of high frequency IMFs of
each of the model set series (Table 1), as these IMFs are assumed to con-
tain nearly all noise fragments. In order to assess the sensitivity of EEMD
performance to noise in the input time series, we added random noise
with rms amplitudes 0.00, 0.01, 0.02, 0.03 and 0.05 NDVI. The noise
model present in real NDVI series is unknown a priori. As Mann and
Lees (1996) argue, geophysical phenomena display a certain degree of
persistence of random distortions, quantified as the noise lag-1 autocor-
relation (AC;) or redness. Therefore we employed both white noise
(AC; =0) and red noise (AC; ={0.25,0.50}) simulations drawn from a
normal distribution.

The full set of simulated series was generated by adding each combi-
nation of annual, interannual and noise component, varying over 3 sea-
sonality types, 4 levels of seasonal irregularity (Qseqs), 7 interannual
models, 5 interannual to annual amplitude ratios (Oint/Oann), 3 Noise
models (AC;) and 5 noise levels (Oyise). Sensitivity of the method's per-
formance to reconstruct interannual components was not only tested
for data-related variations, but also for a method-related parameter, as
described in the next paragraph.

2.4. Components post-processing

The general approach to reconstructing the interannual component
from EEMD components is to add combinations of detected longer-
than-annual components. Estimation of components' periods based on
the number of zero-crossings was outlined above. A currently unre-
solved issue in the post-processing approach is the selection of signifi-
cant interannual components. Three different approaches to selection
have been evaluated through sensitivity analysis.

The need for component selection originates from the potential oc-
currence of low frequency components in the decomposition of random
noise present in the data. As discovered by Flandrin et al. (2004) and
further examined by Wu and Huang (2004), (E)EMD breaks down
white noise into components of approximately doubling periods. How-
ever, the energy (squared amplitude) of a white noise (E)EMD compo-
nent is shown to be related to its period, and constrained by theoretical
confidence bounds (see Appendix B). Monte Carlo verification of this re-
lationship and its confidence bounds deliver a framework to distinguish
a real signal component from noise-induced components, by checking
whether its energy exceeds with high confidence the expected energy
of a noise component with the same period. This framework is proposed
by Wu and Huang (2005) and has been adopted for climatological
(E)EMD applications (e.g., Coughlin & Tung, 2005). The signal/noise dis-
tinction is however entirely dependent on the quantification of the
noise level in the series. An ‘a priori’ test considers the entire series as
potential noise, while an ‘a posteriori’ test can be performed by estimat-
ing the noise level from the high-frequent (E)EMD components which,
under the additive hypothesis, are purely noise-induced (Wu & Huang,
2005). However, we argue that a given (E)EMD component may simul-
taneously contain signal information and noise information with similar
periods. Therefore, exclusion as well as inclusion will introduce some
error in the reconstructed interannual component. In case of sufficiently
signal-to-noise ratios in the data, this balance may be in favor of
retaining all detected components without significance test. We there-
fore consider ‘no test’, ‘a priori’ test and ‘a posteriori’ test in the sensitiv-
ity analysis for the reconstruction of interannual components from
simulated NDVI time series.

2.5. Performance measures

Successful detection and reconstruction of interannual components
from a mix of known input components, and its sensitivity to data-
related and model-related parameters must be expressed in quantita-
tive measures. We propose three different performance measures to
highlight different types of correspondence between two time series
(Lhermitte et al., 2011), in this case the input I; and reconstructed out-
put O interannual components.

Correlation r between two time series indicates whether the detect-
ed pulses are correctly localized in time and have consistently the



Table 2

Sample statistics from time series of 3 prototype growing seasons, denoted as mean (standard deviation). Five parameters represent the shape and timing of the first (I) and second (II) growing season: base level b, peak position p and amplitude A, and

the width w,, and flatness fj, of the tails (as in Jonsson & Eklundh, 2002; see Egs. (5) and (6).

fr

fi

w,(years)

w (years)

p (years)

A (NDVI)

b (NDVI)

Seasonality type

2.19 (1.78)
2.46 (1.70)

1.62 (0.62)
2.16 (1.32)

1.86 (1.50)

1.39 (0.85)
2.32 (1.64)

0.07 (0.05)

0.10 (0.03)
0.15 (0.09)
0.28 (0.09)

0.14 (0.11)
0.23 (0.17)

0.15 (0.12)

0.97 (0.04)
0.83 (0.09)

0.37 (0.03)
0.38 (0.09)
0.45 (0.10)

0.30 (0.10)

0.25 (0.09)
0.21 (0.07)
0.32 (0.05)

0.17 (0.04)
0.61 (0.09)
0.23 (0.03)

*L Bimodal (low NDVI)
“H Bimodal (high NDVI)

* Unimodal

2.88 (2.53)

017 (0.11)

0.30 (0.17)

0.19 (0.05)

P. Hawinkel et al. / Remote Sensing of Environment 169 (2015) 375-389 381

2,51 (1.10)

2.64 (1.42)

0.29 (0.10)

(strongly seasonal)

Table 3

Various models for interannual variability were based on the historic ONI index, defined
by the timing of its episodes (ton;) and their amplitudes (Aon;) with optional random fluc-
tuations at three different levels R;_3. The sample statistics of episode duration
(Ue.ont,Or.onr) are used to model irregular episodes (I).

Label Description Parameters

Honi Historic Oceanic Nifio Index (tonnAont) = Ke.onnOt.oNI

Hest Historic episodes, constant amplitude f(tonnAint)
Hyar Historic episodes, historic varying amplitude f(tonn,Aint“Aont)
Rest Regular episodes, constant amplitude f(Me.onpAint)

Rind Regular episodes, random varying amplitude  f
Lest Irregular episodes, constant amplitude
Iind Irregular episodes, random varying amplitude  f

He.onnAine Ry -3)
Me.oni + Or.onbAint)
Ue.ont + Ot.ontAinRi -3)

paliay

correct direction (positive or negative). It therefore indicates if state-
ments on the occurrence in time of positive and negative climatic epi-
sodes are reliable.

r:Zt:(I[—T)(Ot—G)/ \/zt:(lt—l_)z\/zt:(ot—ﬁ)z (7)

The relative root mean squared error (rRMSE) between two series
summarizes the rms deviations between input and reconstructed
components, relative to the interannual input component's rms am-
plitude. It indicates if statements on the magnitude of particular ep-
isodes are reliable.

rRMSE = |3 (I:—0,)? / S (8)

Finally, weighted spectral coherence (WCOH) between two time se-
ries measures the correspondence (from 0 to 1) of the spectral content
of two time series X, based on their Fourier spectra F(X;), weighted by
the Fourier spectrum of the reference series (with F* the complex conju-
gate of F and (.) expectations estimated by ensemble averaging, see
Alston, Vaughan, and Uttley (2013) for a detailed description). It there-
fore indicates the reliability of statements on the time scales of detected
oscillations.

COH = [(F'(1)-F(0e))* / (| FU) P ){IF(0)I*)) ©)
WCOH = Y (F(I;) » COH)/Y_F(I,) (10)

The overall strategy of composing a simulated series, its decomposi-
tion and subsequent evaluation of the detected interannual component
against the input component is illustrated in Fig. 5.

2.6. Sensitivity analysis

Estimating sensitivity of the above described performance measures
to the parameters in the simulated series aims at identifying those
factors which most affect the successful detection of interannual com-
ponents. Interannual to annual amplitude (Oint/0ann), Seasonal irregu-
larity ((@seqs), Noise autocorrelation (AC;), noise level (Opoise),
seasonality type (SEAS), interannual model (INT) and reconstruction
method (METH) each partially explain the variance in performance,
which is assessed through multiple linear regression. Real-valued vari-
ables (Oint/Oann, Cseas »AC1, Onoise) are standardized with respect to their
respective sample means and standard deviations, in order to make
the estimated regression coefficients comparable. Categorical variables
(SEAS, INT, METH) enter the regression equation as dummy variables.
The regression coefficient for each category represents the effect of
the variable taking on that particular category with respect to a refer-
ence category, enabling a ranking of categories per performance
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Fig. 5. Overview of the evaluation framework. Mixtures X(t) of simulated annual (ANN), interannual (INT) and noise components are decomposed using EEMD. The interannual compo-
nent (red solid line) is reconstructed from selected components and evaluated against the input component (blue dashed line). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

measure. Within the approximation that an increase (decrease) of a
real-valued variable by one standard deviation is equivalent to a cate-
gorical variable taking on a different category, all estimated coefficients
are intercomparable and the factors that most affect the performance
can be identified.

2.7. Case study: interannual NDVI and climate episodes

The validated performance of the EEMD method to retrieve inter-
annual components from NDVI time series is conditioned by the

30.0 35.0 40.0 45.0 50.0

10.0 ? 10.0

5.0
0.0
-5.0 -5.0
e f"’ ‘ & Geographic proj WGS 198:0.0
ol f
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degree to which the simulated series are representative for real
world NDVI time series. To this end it was assessed in two steps
whether the detected interannual NDVI patterns over East and Cen-
tral Africa correspond to the expected long term fluctuations as pre-
dicted by historic climatic episodes.

In a first step, the zones where precipitation is most sensitive to
interannual climatic and oceanic forcing are mapped by correlating
the one-year accumulated Standardized Precipitation Index (SPI)
with historic indices of two major climate phenomena acting in the
region, i.e., ONI and DMI. The SPI index is a z-score of a precipitation

Water/Background
Tree Cover; broadleaved; evergreen
Tree Cover; broadleaved; deciduous; closed
Tree Cover; broadleaved; deciduous; open
Tree Cover; needle-leaved; evergreen
Tree Cover; needle-leaved; deciduous
Tree Cover; mixed leaf type
Mosaic: Tree Cover / Other natural vegetation
Tree Cover; burnt
Shrub Cover; closed-open; evergreen
Shrub Cover; closed-open; deciduous
Herbaceous Cover; closed-open
Sparse herbaceous or sparse shrub cover
Regularly flooded shrub and/or herbaceous cover
Cultivated and managed areas
Mosaic: Cropland / Tree Cover / Other natural vegetation
Mosaic: Cropland / Shrub and/or grass cover
Bare Areas
Artificial surfaces and associated areas

Fig. 6. The distribution of land cover types over the study area (GLC2000; Bartholomé & Belward, 2005) reflects to a large extent the different levels of mean NDVI shown in Fig. 3. Eco-
systems respond differently to regional precipitation variability, as confirmed in the demonstration case study over East and Central Africa (see Discussion Section).
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Table 4

Multiple linear regression of 3 performance measures against data and model parameters
indicates the sensitivities of the EEMD method. Real-valued variables are scaled in order to
make their coefficients comparable to the dummy coefficients of categorical variables. Re-
gression coefficients indicate the effect of a change of one standard deviation of a real-val-
ued variable, or the effect of a change of category with respect to a reference category for
categorical variables.

Correlation rRMSE wCOH
Offset 0.68 122 041 e
Real-valued variables
Gint/cann 0.21 e —041 e 0.21 e
(PSEGS - 0.05 e 0.30 e - 0.08 o
ACy —0.08 *** —0.03 *** —0.06 ***
Onoise —0.01 e 0.04 e —0.02 e

Categorical variables
SEAS (reference category = ‘high bimodal’)

‘Low bimodal’ 0.10 ™ —042 ™ 012 ™
‘Unimodal’ 005 ** —020 ** 012 **
INT (reference category = Hcst)

Rest 0.03 ** —0.07 ** 008 ***
Rrnd 0.00 0.02 0.05 ***
Honi 0.03 *** —0.03 0.02 ***
Icst —0.02 ** 0.03 —0.01
Hvar —0.02 * 0.02 —0.01

Irnd —0.04 *= 0.02 ** —0.02 **

METH (reference category = ‘no test’
‘A posteriori’
‘A priori’

—0.16 *** 0.05 ** —0.09 **
—034 ** —0.00 —-022 **=

P(X > [t]) in Student t-test: 0 *** 0.001 ** 0.01 ** 0.05 ‘" 0.1 1.

event compared to the historic sample of events in the same period
within the year, taking into account the non-normal distribution of
rainfall events (Guttman, 1999). The SPI algorithm allows the defini-
tion of a time scale, i.e., the width of the past time window to consid-
er as an accumulated precipitation event. SPI with a one-year time
scale was used as a first proxy of interannual precipitation. The
resulting maps reveal where the climate phenomena described by
the indices have a strong coupling with the interannual precipitation
patterns. This is where a strong interannual NDVI response can be
expected.

In a second step, the decomposition model is applied to the NDVI
time series of each pixel in the AVHRR/VGT dataset over East and Cen-
tral Africa. The detected interannual components per pixel (with the
choice of model parameters guided by the outcomes of the sensitivity
analysis) are in turn correlated with the ONI and DMI indices. If EEMD
detection on NDVI time series is effective, the footprint of ONI and
DMI must be found in the interannual vegetation changes in those
areas sensitive to precipitation fluctuations revealed in step one. A por-
tion of the Global Land Cover map (GLC2000; Bartholomé & Belward,
2005) over the study area (Fig. 6) assists in the interpretation of the veg-
etation responses to climate variability.

Table 5

3. Results

3.1. Sensitivity and performance of EEMD interannual NDVI detection using
simulated time series

Following the evaluation framework (Fig. 5), the sensitivity of the
EEMD method was assessed through multiple regressions of the perfor-
mance measures against data and model parameters.

Table 4 shows multiple linear regression coefficients of performance
measures against parameters by least-squares estimation, along with
their symbolized significance in a Student-t test.

Correlation between input and reconstructed output is primarily de-
termined by the interannual/annual amplitude ratio (Ojn¢/Oann) and to
the choice of post-processing method, where both ‘a priori’ and ‘a
posteriori’ testing tend to reduce the correlation between input and out-
put interannual components relative to the no-IMF selection method
(‘no test’). To a lesser degree, more autocorrelation in the noise model
tends to distort correlations, whereas the overall noise level has little
impact over the range estimated from the real world dataset. While
there is a limited discrepancy in input-output correlation between the
different seasonal models and its degree of irregularity, the choice of in-
terannual model does not affect correlation strongly.

The rRMSE between input and output interannual components takes
on values in a range around unity. It decreases significantly only in the
case of a strong interannual component, a relatively regular annual
cycle, or a particular type of growing season. Noise characteristics, inter-
annual models and selection criteria for interannual IMFs have less
weight on the detection accuracy measured by rRMSE.

Weighted spectral coherence (wCOH) shows sensitivities very sim-
ilar to that of correlation, favoring the inclusion of all detected interan-
nual IMFs in the estimated interannual component. Again, the relative
strength of the interannual component compared to the seasonal cycle
is of more importance than their assumed underlying models or the
characteristics of the noise in the series.

As a conclusion from the correlation, rRMSE and spectral coherence
measures (Table 4) it can be seen that the ‘no test’ approach performs
best to detect the input interannual components, but that the perfor-
mance of this method is still strongly dependent on the interannual/an-
nual amplitude ratio and seasonal irregularity expressed as a number of
sample standard deviations in start of season. This can be seen for exam-
ple in Table 5, which contains the values of the performance measures
as a function of these two data-related parameters, following the ‘no
test’ approach.

3.2. Case study over East and Central Africa

Fig. 7 displays the correlation of precipitation patterns in East and
Central Africa with dominant regional climate phenomena. The ONI
index, representing the El Nifio Southern Oscillation (ENSO) based on
Pacific sea surface temperatures, explains a part of the precipitation

Performance measures of the ‘no test’ approach as a function of annual irregularity (ANN irr) and interannual/annual amplitude ratio (unimodal annual season, interannual model I,,4, red

noise (AC1 = 0.25; o = 0.03 NDVI)). Darker shades indicate better detection performance.

Correlation

ANN irr (o) 0.0 05 1.0 15 0.0

INT/ANN ratio

rRMSE Weighted spectral coherence
0.5 1.0 1.5 0.0 0.5 1.0 1.5
0.29 0.21 0.08 0.05
0.65 0.28 0.15 0.23
0.71 0.58 0.59 0.25
0.70 0.70 0.55 0.31
0.75 0.57 0.77 0.74
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Fig. 7. Spatial representations of the correlation between one-year accumulated SPI and indices of regional climate phenomena highlight the areas where precipitation variability is sen-
sitive to (a) the El Nifio Southern Oscillation and (b) the Indian Ocean Dipole Mode. Oceanic exposure and local climate factors such as lakes partially predict sensitivity to these influences.

variability principally in the regions most exposed to oceanic influence
(Fig. 7a). ENSO forcing is strongest in the Somalian, Ethiopian and
Kenyan lowlands, only stretching further inland through the Turkana
basin. Elsewhere its influence is limited by the Eastern and Southern
rift mountains. Precipitation patterns in the Sudan lowlands towards
the Sahel are rather out of phase with ENSO, pointing at the dominance
of more local phenomena either not described by ENSO or negatively in-
terfering with it (Williams & Hanan, 2011). Plisnier et al. (2000) indicat-
ed that (a) the effect of global ENSO episodes is often overruled by local
climate agents such as large lakes, (b) the Indian Ocean dynamics might
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provide a better proxy for climate variability in certain African regions.
As seen from Fig. 7b, The Indian Ocean DMI index, explains more vari-
ability of the Sahelian precipitation in the absence of direct ENSO influ-
ence. In addition, the precipitation downwind of Lake Victoria and Lake
Tanganyika responds more to DMI forcing, stretching as far as the trop-
ical rainforest in the Congo Basin (Fig. 6).

Next, it was assessed whether EEMD detected interannual NDVI is
able to reveal the expected vegetation responses in the areas sensitive
to climate variability. Fig. 8 shows the strength of the coupling between
interannual NDVI and the ONI and DMI indices respectively. The
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Fig. 8. Correlation maps of EEMD detected interannual NDVI with the historic ONI and DMI indices highlight the areas where vegetation changes are influenced by regional climate var-
iability. These areas largely correspond to the areas where precipitation is forced by the same regional oceanic phenomena, demonstrating that meaningful interannual NDVI components

can be extracted using EEMD decomposition.
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interannual NDVI follows the ONI index in most of the lowlands identi-
fied as sensitive to ENSO (Fig. 8a), dominated by herbaceous and sparse
shrub cover. However, the deciduous forest areas north of the Congo
Basin do not respond to wet ENSO-driven episodes. As expected, vege-
tation in the continental lowlands responds negatively to lower than
usual precipitation amounts during warm ENSO phases.

Correlation between interannual NDVI and DMI emphasize these
findings. Although the Indian Ocean effects act differently throughout
the study area, the detected responses of vegetation to DMI episodes
matches the areas identified as sensitive to DMI well in most areas.
The ocean-exposed lowlands under low vegetation cover display
greenness anomalies in response to increased precipitation during pos-
itive DMI episodes. The same holds for other DMI-sensitive areas in the
Eastern Sahel and around Lake Victoria. Remarkably, the coupling of
vegetation to the DMI episodes cannot be explained everywhere by its
effect through precipitation, for example in vast areas of South Kenya
and North Tanzania. Again, the forest ecosystems of the Congo Basin
are neutral towards precipitation variability driven by Indian Ocean
phenomena. A similar observation is made for the partly forested
areas in South Tanzania: despite strongly DMI-forced precipitation,
the NDVI response is rather ambiguous. Finally, the out of phase charac-
ter of precipitation in the Ethiopian highlands with respect to DMI is
also detected in the interannual NDVL

The lower response of tropical forest ecosystems reflects the
lower importance of water as a limiting factor, as well as the satura-
tion effect of NDVI for high leaf area canopies (Sellers, 1985). In ad-
dition, forest-climate interactions (Makarieva & Gorshkov, 2007)
and moisture recycling dynamics (van der Ent, Savenije, Schaefli, &
Steele-Dunne, 2010) are known to cause particular rainfall dynamics
above forests, partly independent from the dominant oceanic mois-
ture supply.

4. Discussion

Ensemble Empirical Mode Decomposition (EEMD) proves to be a
suitable algorithm for the automated decomposition of large sets of
NDVI time series into their characteristic time scales. The original
EEMD decomposition technique (Huang et al., 1998; Wu & Huang,
2009), complemented by the IMF sorting procedure proposed in §2.2
and clear choices of parameters for sifting and splining (Appendix A),
is able to deliver the interannual components of any given time series.

With respect to reconstructing the interannual component from
detected components, we reject the existing significance test to distin-
guish signal from noise-induced components for interannual compo-
nent detection, since neither the ‘a priori’ or ‘a posteriori’ version of
the test yield better results than the ‘no test’ approach. Instead we
weighted the capabilities of these significance tests to identify noise-
induced low frequency components against the risk that these compo-
nents may in fact contain signal as well as noise fragments (hereafter
called mixed components). Although neither approach ensures a precise
reconstruction of interannual components in terms of rRMSE, the linear
and spectral properties of such components were best recovered by
retaining all interannual IMFs (‘no test’). This implies that mixed com-
ponents, if occurring in the decompositions of our simulated time series,
contain on average more signal than noise fragments. Attempts to filter
noise-affected components by subjecting individual IMFs to significance
tests decreased performance measured by correlation and spectral
coherence.

However, two nuances must be added to this finding. First, it may
hold true for the tested ranges of Ojn¢/0ann and absolute Oppise, Which
were in turn based on estimated ranges from a real NDVI dataset.
Outside these ranges noise may start to dominate low frequency
EEMD components, prompting a significance test to retain the true
signal components. This may be commonly the case for other
biogeophysical or climatological datasets and applications, so our
conclusion should be limited to the application on integrated time

series of remotely sensed vegetation indices and its typical signal
to noise ratios. Second, it can be argued that the purpose of IMF sig-
nificance testing in a climatological context, as in the work of
Coughlin and Tung (2005), is to isolate pure time scales with a high
degree of probability to originate from signal rather than noise.
This justifies strict filtering of potentially noise-induced IMFs. Con-
versely, when using multiple IMFs to reconstruct interannual com-
ponents with an unknown combination of time scales, retaining
both pure and mixed IMFs may be favorable as a strategy.

The values of the performance measures for given (inter)annual
models and noise characteristics under the ‘no test’ approach
(Table 5) give an account of the major sources of variability in perfor-
mance, i.e., the relative strength of the interannual component com-
pared to the dominant annual cycle (Ojn¢/Oann), and the irregularity
in timing of the annual season (Qsqs). It is worth noting that both
factors do not act independently. The distorting effect of irregular
growing seasons is of less impact when the superimposed interannu-
al modulation is sufficiently high in amplitude, for example in arid
ecoregions with a strong oceanic influence (Fig. 6). A practical impli-
cation is that both factors must preferably be estimated upon detec-
tion. LOW Ojn¢/Oann ratios, corresponding to weak interannual
changes compared to the NDVI range of the growing season, may
hamper the detection and subsequent processing of a pixel's interan-
nual component, unless the annual cycle displays a sufficiently regu-
lar timing. If threshold values for both parameters are considered,
pixels can be masked out from further interpretation. Whereas the
choice of thresholds is arbitrary and dependent on the further steps
in a particular application, the results presented in Table 5 offer some
guidelines. For example, a threshold of [0,,/Ogn,>0.33] will generally en-
sure a good reproduction of the interannual component measured by cor-
relation and spectral coherence. As seen from Table 1, this applies for all
ecoregions with a dry or wet bimodal growing season. For unimodal
(semi-arid to subhumid) ecoregions, the interannual NDVI components
are buried under a more dominant seasonal component. However, if the
estimated variability (measured as standard deviation) of the growing
season peak position does not exceed half of the sample standard devia-
tion used in our simulated prototype (0.10 years, see Table 2), then the
performance level is largely maintained. We therefore recommend that
automated use of EEMD to reveal interannual components from large
gridded time series data (biogeophysical, climatological) be preceded by
a calibration step, whereby preliminary estimates of the series' composi-
tion and characteristics are collected in order to assess the proper limits of
detection.

A major implication for the further use of detected interannual com-
ponents of NDVI (or other remotely sensed vegetation indices) in a
causal analysis with gridded climate datasets, is the fact that detection
performs relatively well when measured by correlation or spectral co-
herence, but proves imprecise with respect to its rRMSE deviation
from the true component. This suggests that positive and negative epi-
sodes in interannual vegetation change can be localized, and that the
time scales present in the series are represented well. Conversely, the
high rRMSE values (~0.40 under optimal conditions) indicate that an
EEMD detected interannual component of a time series does not neces-
sarily represent the actual interannual NDVI change at each discrete
point in time. Neither can the absolute amplitudes of individual positive
or negative episodes be interpreted as such. The power of the decompo-
sition tool lies in the capability to filter the desired time scales from a
mixed signal, and to produce a global representation of the occurrence
and relative intensities of positive and negative episodes. Further devel-
opment of a technique to identify and isolate a climate-forced compo-
nent in the interannual NDVI component must take this knowledge
into account. It must not rely entirely on instantaneous responses in
the time domain, but rather consider sufficiently large time windows
as well as the spectral domain for bivariate analysis with climate series.

A first effort to shift the EEMD analysis beyond the simulated setting
towards real world NDVI series demonstrated that spatially coherent
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patterns of vegetation dynamics can be revealed and explained (partial-
ly) by episodes of regional climate oscillations. Gridded precipitation
datasets - remotely sensed as well as modeled using observational
data - are expected to explain the detected interannual vegetation dy-
namics at a more local scale. Eventually, explained interannual variabil-
ity can be separated from non-explained patterns, for further
interpretative analysis over particular study areas.

The case study on real NDVI and climate datasets over East and
Central Africa demonstrates that EEMD detection is able to produce
meaningful indicators of interannual NDVI changes, as their spatial dis-
tribution corresponds largely to what can be expected from empirical
climate data. As for any processing tool, the quality and the real world
value of the output are inevitably limited by the quality of the input
data. In the case of the EEMD decomposition of NDVI time series, incon-
sistencies in long term NDVI archives are the principal source of spuri-
ous patterns in the detected interannual NDVI, which may jeopardize
conclusions in thematic studies like the case study in this paper. The
most likely causes of inconsistency can be categorized as within-
sensor inconsistencies (e.g., orbital drift or imperfect corrections for it)
or between-sensor inconsistencies (e.g., historic processing differences,
imperfect intercalibration of spectral response, or differences in sun-
target-sensor geometry). Other sources of error with a less systematic
occurrence, such as sensor noise and undetected clouds, will have less
effect on the detected outcome, as the EEMD technique efficiently iso-
lates high frequent components. With this knowledge, the quantitative
validation of the detection tool was based on simulated data rather than
on any existing real world dataset containing residual inconsistencies.
The LTDR/VGT dataset contains at least two potential sources of incon-
sistency. The first one is the empirical linear sensor intercalibration be-
tween AVHRR and VGT as described in Section 2.1.1 yields slightly
biased residuals for NDVI values above 0.65. In practice, this may
cause an upward jump in NDVI at the 1999 breakpoint for pixels in
densely forested areas. Moreover, 1999 may not be representative for
the full NDVI record in case of residual between-sensor inconsistency
in the LTDR version 2 data, which may cause an artifact interfering
with the former effect. The second source of inconsistency stems from
between-sensor inconsistency of the VGT-1 and VGT-2 sensors related
to spectral response discrepancies. This effect has been identified to
cause an upward break in 2003 throughout all NDVI strata (Tian et al.,
2015). For future applications, alternative datasets can be considered.
The LTDR version 4 provides improvement upon the earlier version
with respect to geolocation as well as an extension in time with succes-
sor NOAA platforms (NASA, 2014). The updated 15-day composite NDVI
product of the Global Inventory Modelling and Mapping Studies
(GIMMS3g) results from efforts to recalibrate historic NOAA-AVHRR
data by correcting for effects introducing spurious NDVI trends such as
orbital drift and volcanic eruptions (Fensholt & Proud, 2012; Pinzon
et al,, 2005). GIMMS3g is thus likely to display improved stability over
time, although potential artifacts have been identified over various
NDVI strata (Tian et al., 2015). Finally, the MODIS instruments have pro-
vided NDVI records from 1999 onwards, considered an improvement
upon the AVHRR products due to their narrow band definitions and
wide dynamic range (Huete et al., 2002). Although generally deemed
the alternative dataset with highest consistency, the MODIS NDVI series
was found to contain the effects of sensor degradation (Wang et al.,
2012).

Regardless the eventual choice of dataset, the EEMD decomposition
and reconstruction approach in its current form is deemed operational
to conduct thematic follow-up research. It is complementary to existing
time series processing tools in the sense that ‘interannual NDVI’
representing slow year-to-year evolution of vegetation greenness is a
new key variable in remote sensing-driven environmental research.
Its user community may invoke extraction tools according to their spe-
cific needs: BFAST (Verbesselt et al., 2010) for the detection of stepwise
trends and breakpoints relating to abrupt and gradual vegetation distur-
bances, such as wildfires and recovery; TIMESAT (Jonsson & Eklundh,

2002) for a detailed parameterization and quantification of parameters
related to the growing season; SPIRITS (Eerens et al., 2014) for near-real
time agricultural monitoring through processing of images and the ex-
traction of vegetation indices related to crop status. EEMD is proposed
to complement this list of tools as one to extract interannual vegetation
changes in response to climatic oscillations and other sources of period-
ic disturbance episodes.

Despite this applicability, some points for methodological improve-
ment can be defined. A review of existing methods to estimate a priori
the nature and the level of noise from an NDVI time series may contrib-
ute to the calibration phase necessary before EEMD application on a
new dataset. If noise can be modeled and estimated more accurately,
the performance of the ‘a posteriori’ significance test for IMFs may sur-
pass that of the current ‘no test’ approach. Further refinement of the
EEMD application for automated analysis of gridded time series data
can consist of evaluating the effects of series length and temporal reso-
lution, which were held constant at 1114 ten-day time steps in this
analysis.

5. Conclusions

Available archives of more than thirty years of remotely sensed op-
tical imagery provide large spatiotemporal datasets, showing changes
in condition of terrestrial vegetation as per-pixel NDVI trajectories. Be-
side seasonal variation, weaker but considerable interannual fluctua-
tions exist in the NDVI series, and their identification is of high
interest for research aiming at quantifying the long-term effects of cli-
mate variability on ecosystems. Thereto, signal processing techniques
can be employed to detect interannual NDVI components within quan-
tified limits of uncertainty.

We found that the Ensemble Empirical Mode Decomposition
(EEMD) technique, extended with a sorting procedure for IMF compo-
nents, is suitable to split a given NDVI time series into its constituent
components with distinct time scales. The longer-than-annual EEMD
components can be combined to reproduce the overall interannual
oscillation present within the series. Implementation for automated
processing of large NDVI datasets requires some complementary algo-
rithmic formalization, which we proposed in this paper.

In order to gain insights in the performance of this method to accu-
rately represent the true interannual component, and its sensitivities to
data and model parameters, we tested its performance in a controlled
setting with simulated NDVI time series. With respect to performance,
we concluded that EEMD-detected interannual components generally
represent well the occurrence of positive and negative episodes
with proper time scales, whereas the local amplitudes must not be
interpreted for individual episodes. This finding provides useful insights
for subsequent bivariate analysis of interannual NDVI with precipitation
series. With respect to sensitivities, the strength of the interannual com-
ponent relative to the seasonal cycle, and modality and timing of the
growing seasons, proved to be the principal factors affecting the detec-
tion performance. In addition, they interact and should therefore be
assessed upon detection so that time series with low confidence in de-
tection outcome can be excluded from the analysis.

The effectiveness of the EEMD decomposition method to detect inter-
annual vegetation was demonstrated on real NDVI and climate data over
East and Central Africa. In most areas where precipitation variability is
sensitive to regional climatic and oceanic forcing, the method reveals in-
terannual vegetation changes that show the expected responses, except
in dense forest ecosystems. Finally, some methodological points of action
were defined for further development of this tool to extract environmen-
tally relevant information from growing remote sensing data sources.
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Appendix A. The Empirical Mode Decomposition algorithm (Huang
et al., 1998)

A series X(t) is decomposed into a finite number of Intrinsic Mode
Functions (IMFs) and a residual term R(t) following the additive
model (Eq. (3)).

The locations and values of all local minima and maxima in a series
X(t) are detected using an extrema-finding function. Endpoints of the
series are not considered as extrema unless they lie outside the range
defined by the nearest minimum and maximum. For flat sections, the
(left) middle location is returned.

The lower (upper) envelope of X(t) is obtained by connecting the
local minima (maxima) of X(t) using a cubic spline. Cubic splines are
uniquely defined when values for the second derivatives at the end-
points are provided. We follow the two-step approach of Pegram et al.
(2008), here described for the left end of the lower (upper) envelope.
The first original minimum (maximum) is mirrored around the left end-
point, and assigned the same second derivative. A cubic spline is calcu-
lated through the minima (maxima), ignoring the left endpoint. If the
left endpoint is found to lie outside the calculated envelopes, it is
added to the extrema set and the spline is recalculated. This is to
avoid splines to vary freely at the ends, which would cause end effects
propagating through the following iterative sifting procedure.

The mean of lower and upper envelopes M(t) contains the low-
frequent information of X(t). The first ProtoMode Function (PMF;) of
X(t) is obtained by subtracting M(t) from X(t). This step is termed ‘sift-
ing’ and PMF; is enriched in high frequency information. Sifting PMF;
yields PMF, and the procedure is repeated k times until the number of
extrema and the number of zero-crossings have not changed for S con-
secutive siftings. PMF is taken as the first Intrinsic Mode Function
(IMF;) of X(t). We follow the guidelines by Huang et al. (2003) and
use [S=5] as a stopping criterion for the sifting process.

The difference of X(t) and IMF; is the (preliminary) residual. It is
ingested in the sifting procedure to yield IMF,, which will contain the
high frequency information after subtraction of IMF;. More IMFs are ob-
tained iteratively with increasing frequencies, until the (final) residual
R(t) is monotonic or has one extremum. It can be regarded as the resid-
ual trend in the series.

The computing cost of the EMD algorithm increases quadratically
with the length N, of the time series. Its most costly step is the cubic
spline interpolation, which involves manipulations on N:xN; matrices.
For N;=1114, the spline interpolation accounts for nearly 80% of the
total computing cost of 1163 msec. In our IDL implementation, the com-
puting time tc,mp (in msec) for one series of length N, is on average given
by

teomp = (0‘000858 « N2 +0.282+N; + 23.2). (A1)

For the EEMD extension, there is an additional linear increase with
the number of noise-added iterations (set to 50 in this study). The
vast number of pixels in a spatio-temporal dataset as the image sets
over East and Central Africa (>14000 land pixels at 20 km resolution)
further pushes the total processing time into the order of magnitude
of weeks.

Appendix B. Significance test for IMFs based on period—energy rela-
tionships of white noise

The theoretical and derived empirical relationships to distinguish
signal from noise, are based on two key characteristics of an IMF of a se-
ries with length N: its energy density

_1 2
E_MZIMF (B1)

and its theoretical mean period T, estimated as T by counting the
number of extrema divided by twice the series length. Wu and Huang
derived that the energy of a population of white noise series normalized
to unit energy density has a mean E, related to its mean period T:

In(E) = — In(T). (B2)

Moreover, the probability distribution of the energy density of a
white noise IMF can be derived from the finding that N,*E follows a
x>-distribution with N, *E degrees of freedom:

P(N; + ) = (N, » EY¥E21 exp(— y) /(24520 E2). (B3)

Through log-transformation of the energy density
y = In(E) (B4)

and substitution of Eqs. (B2) and (B4) into the probability distribution of
Eq. (B3), the confidence levels for the log-energy density of an IMF orig-

inating from white noise can be estimated from its mean period T.

p(y) = (N = expy)"/ ") exp(—N; « exp(y)/2)/ (2"/CDr (Ny/ (27) ) )
(BS)

The bias in the estimation of T affects Eq. (B2) but preserves its linear
relationship. Monte Carlo verification by a large number of random
white noise simulations yielded the empirical relationship for series
length [N,=1114]:

In(E) = —1.08 In(T) +0.12. (B6)

The energy distributions and confidence levels were recalculated ac-
cordingly, and verified with the simulation result. The (shifted) theoret-
ical 99% confidence limit proved to bound 95% of the white noise
simulations. Similar outcomes with slightly different coefficients were
found for red noise simulations with [AC1 ={0.25,0.50}].

As white noise is assumed to contain no information, real signal
components will display energies higher than can be expected from
white noise with a chosen level of confidence. Under the ‘a priori’ ap-
proach, a given time series consisting of signal and noise is normalized
to unit energy density and treated as being potentially pure noise. If
however the noise level in the series can be estimated, the normaliza-
tion step can be performed more accurately ‘a posteriori’ and more sig-
nal components can be distinguished. Both approaches were evaluated
in this paper.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2015.08.024.

Appendix C. Supplementary data

Supplementary data associated with this article can be found in the
online version, at doi:http://dx.doi.org/10.1016/j.rse.2015.08.024.
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These data include Google maps of the most important areas described
in this article.
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