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Zurlini et al. (2014) formulated interesting thoughts on

our recent publication dealing with the assessment of

ecosystem stability using remote sensing time series

(De Keersmaecker et al., 2014). Their main concerns can

be summarized as follows: (i) the normalized spectral

entropy (HSn; Zaccarelli et al., 2013) that was used to

quantify resilience, should be interpreted as a metric

for structural irregularity, rather than regularity and (ii)

our focus was on local stability and the ability to return

to a stable point or trajectory only (i.e., engineering

resilience), whereas stability metrics are commonly

used to assess the adaptive capacity to remain within

the same stability domain (i.e., ecological resilience)

(Pimm, 1984; Holling, 1996; Dakos et al., 2012).

First, since we applied HSn to anomaly time series

instead of to original Normalized DifferenceVegetation

Index (NDVI) time series, the interpretation of the HSn

metric also changes from structural irregularity to regu-

larity. For example, when a large disturbance results in

vegetation response persistent anomalies, the time ser-

ies regularity would decrease (i.e., increase in HSn) but

also the irregularity of the anomaly time series would

decrease (i.e., decrease in HSn).

Although we believe that both interpretations of HSn

are valid, we based our analysis on the anomaly time

series as it avoids the sensitivity of HSn to shape effects.

Shape effects can have strong impact on the interpreta-

tion of HSn as a regularity metric as is illustrated in

Fig. 1. Both time series shown are equally regular, but

have different HSn values, which complicates the inter-

pretation of regularity, whereas this is not the case for

the anomaly time series with equal HSn values.

Second, we agree that De Keersmaecker et al. (2014)

focuses on local stability, whereas other stability mea-

sures can be important as well (Holling, 1996). How-

ever, these other stability measures are difficult to

quantify based on metrics that assume stationarity and

consequently do not account for multiple stable states

[e.g., HSn is based on a Fourier transformation which

assumes stationarity (Zaccarelli et al., 2013)]. For

example, it is difficult to interpret HSn as an indicator of

ecological resilience without knowing when the time

series switches from one local stability regime to

another. This is illustrated in Fig. 2, which shows two

time series with similar HSn values but different stabil-

ity regimes (i.e. time series A flips between two

regimes, whereas time series B has only one regime).

Therefore, we believe that detecting tipping points is

imperative before assessing other stability measures.

The interpretation of the stability metrics described in

De Keersmaecker et al. (2014) is therefore only useful

within a regime of local stability.

Finally, we want to stress that the conclusion of De

Keersmaecker et al. (2014) was exactly that understand-

ing the reliability of stability metrics is essential when

assessing ecosystem stability. This is especially true

because time series properties (e.g., the presence of
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Fig. 1 Effect of the seasonality shape on the HSn metric. Time

series 1 and 2 have the same standard deviation and both show

a strong regularity. As the HSn value of the square time series

equals 0.25, while the HSn value of the sinusoidal time series

equals 0.02, the HSn metric is not only sensitive to structural

regularity of the time series, but also to the seasonal shape of

the time series. After adding noise to the time series (semitrans-

parent lines), the HSn of the square and sinusoidal time series

equals 0.30 and 0.03, respectively, while their anomaly time ser-

ies have a HSn value of 0.87.
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multiple stable states and the use of original vs. anom-

aly time series, as demonstrated here) can highly affect

the interpretation of these metrics.

References

Dakos V, Carpenter S, Brock W et al. (2012) Methods for Detecting Early Warnings of

Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.

PLoS ONE, 7, e41010.

De Keersmaecker W, Lhermitte S, Honnay O, Farifteh J, Somers B, Coppin P (2014)

How to measure ecosystem stability? An evaluation of the reliability of stability

metrics based on remote sensing time series across the major global ecosystems.

Global Change Biology, 47 (20), 2149–2161.

Holling CS (1996) Engineering resilience versus ecological resilience. In: Engineering

Within Ecological Constraints (ed. Schulze P), pp. 31–43. National Academy Press,

Washington DC, USA.

Pimm S (1984) The complexity and stability of ecosystems. Nature, 307, 321–326.

Zaccarelli N., Li B.-L., Petrosillo I., Zurlini G. (2013) Order and disorder in ecological

time-series: introducing normalized spectral entropy. Ecological Indicators, 28, 22–

30.

Zurlini G, Li B-L, Zaccarelli N, Petrosillo I (2014) Spectral entropy, ecological resil-

ience, and adaptive capacity for understanding, evaluating, and managing ecosys-

tem stability and change. Global Change Biology, 21, 1377–1378.

0 1 2 3 4 5 6 7 8 9 10
4

4.5

5

5.5

6

Time ()

R
es

po
ns

e 
va

ria
bl

e 
()

 

 

H
Sn

H19.0 = 
Sn

 = 0.02(a)

Time series A;
H

Sn
 = 0.55

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

Time ()

R
es

po
ns

e 
va

ria
bl

e 
()

 

 

(b)

Time series B;
H

Sn
 = 0.54

Fig. 2 Effect of nonstationarity on the HSn metric. (a) Time series A has two regimes with a clear break point: the first part of the time

series follows a white noise pattern (HSn � 0.91), while the second part shows a sinusoidal pattern (HSn � 0.02). The total time series

has a HSn metric of 0.55. (b) Time series B has one regime which is a combination of a white noise pattern and a sinusoidal time series,

but its HSn is similar to the HSn of time series A. This illustrates the importance of break point detection for interpreting the HSn metric

on nonstationary time series.
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