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Abstract: Within the context of climate change, it is of utmost importance to quantify the stability
of ecosystems with respect to climate anomalies. It is well acknowledged that ecosystem stability
may change over time. As these temporal stability changes may provide a warning for increased
vulnerability of the system, this study provides a methodology to quantify and assess these temporal
changes in vegetation stability. Within this framework, vegetation stability changes were quantified
over Australia from 1982 to 2006 using GIMMS NDVI and climate time series (i.e., SPEI (Standardized
Precipitation and Evaporation Index)). Starting from a stability assessment on the complete time
series, we aim to assess: (i) the magnitude and direction of stability changes; and (ii) the similarity
in these changes for different stability metrics, i.e., the standard deviation of the NDVI anomaly
(SD), auto-correlation at lag one of the NDVI anomaly (AC) and the correlation of NDVI anomaly
with SPEI (CS). Results show high variability in magnitude and direction for the different stability
metrics. Large areas and types of Australian vegetation showed an increase in variability (SD) over
time; however, vegetation memory (AC) decreased. The association of NDVI anomalies with drought
events (CS) showed a mixed response: the association increased in the western part, while it decreased
in the eastern part. This methodology shows the potential for quantifying vegetation responses to
major climate shifts and land use change, but results could be enhanced with higher resolution time
series data.
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1. Introduction

Ecosystems provide important services to man and society, such as water purification,
regulation of climate, pests and diseases, pollination, provision of wildlife habitat, biodiversity
conservation and the delivery of wood and products through ecosystem functions, such as biomass
production [1]. However, changes in average climate conditions, as well as increased frequency
of climate extremes, suggested by the latest IPCC scenarios, threaten the stable delivery of these
services [2]. Consequently, understanding the stability of these ecosystem services is of critical
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importance. Methods that examine the stability of natural and productive systems using remote
sensing can therefore be useful for this kind of assessment.

Vegetation or ecosystem stability is commonly measured using four main stability metrics. At the
moment a disturbance occurs, the vegetation state may change, where the ability of the ecosystem
to withstand the disturbance is referred to as resistance. After the disturbance, the ecosystem may
return to its original state. The speed at which the ecosystem returns is denoted by engineering
resilience. However, sometimes the disturbance is strong enough or changing conditions have
diminished its engineering resilience, and the system might change its regime, i.e., find a new stable
state. The magnitude of disturbance needed for the system to switch regime is called ecological
resilience. Finally, variance denotes the total variability of the system in response to environmental
anomalies [3].

In order to quantify vegetation stability, the response of a vegetation state indicator, such as
biomass, should be assessed in relation with the disturbances. The large-scale quantification of
biomass or other vegetation state indicators is however difficult to achieve.The assessment is often
labor intensive, costly and sometimes even destructive. Remote sensing time series of vegetation
indices provide a means to retrieve indicators of vegetation stability at a global scale. Several indices,
such as the Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI), have
been developed, which are related to the biomass and greenness of vegetation [4]. The characteristics
of these remote sensing time series, and more specifically their anomalies, can be used to obtain
large-scale spatial patterns of vegetation stability. For example, the anomaly value associated with the
moment of disturbance is an indicator of the resistance of the system. The standard deviation can be
related to the variance and the auto-correlation at lag one can be related to engineering resilience [5].

Estimating resistance, engineering resilience or variance using a single metric on a complete
anomaly time series, however, poses problems in a situation where the vegetation response changes
over time [6]. This is illustrated in Figure 1, where two time series are shown with the same overall
standard deviation and auto-correlation at lag one. While Time Series B is stationary (i.e., the
characteristics of the time series, such as its variability, mean and the relationship between subsequent
observations do not change over time), Time Series A shows changing behavior. Its auto-correlation at
lag one and standard deviation increases over time, which could be interpreted as a sign of increased
vulnerability (i.e., lower resilience and higher variability, respectively).

Assessment of such changes in vegetation response is of major importance for management
purposes [7]. It may provide a warning for increased vulnerability and may serve as an indication for
land managers that additional attention is required. Moreover, prior to the critical point of divergence
when a regime shift occurs, vegetation response may show an altered response [8,9]. Vegetation is
assumed to recover more slowly, i.e., critical slowing down, and its variability may increase before
the shift [8–10]. Quantifying changes in vegetation recovery and variance thus potentially provides
an extremely interesting asset for ecosystem management. It may allow one to monitor, predict and
potentially intervene with ecosystems before a regime shift has occurred. The latter is of utmost
importance, because these shifts may entail large economic and ecological losses, while their reversal
may be extremely difficult [11]. Consequently, if changes in vegetation response are not observed and
considered in ecosystem monitoring, important information about vegetation stability may remain
unnoticed with severe consequences for production and function.

Many studies have already taken advantage of the availability of long-term and large-scale
satellite time series to quantify changes in vegetation response or vegetation dynamics. Several of
these studies focused on temporal trends of vegetation greenness indicators (i.e., greening or browning;
[12–16]), revealing a greening trend in many parts of the world. Other studies quantified changes in
phenology (e.g., [17], rainfall use efficiency [18], resilience [10] or the relation between inter-annual
temperature variability and northern vegetation activity [19]. However, a study quantifying and
related changes of the different aspects of vegetation stability, i.e., resistance, resilience and variance,
has not been performed yet to our knowledge.
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Figure 1. Proof of concept: two time series (a,b) (the y-axis represents a response variable (e.g., biomass
or NDVI), and the x-axis represents the observation number of the time series, an indicator of
time) having approximately the same standard deviation (SD) and auto-correlation at lag one (AC1).
Time Series A, however, shows a break-point in the two properties: the standard deviation increases
from 0.05 to 0.10 and its autocorrelation from 0.32 to 0.90, while the SD and AC1 approximately remains
the same for time series B. This illustrates that metrics applied on the complete time series might fail to
provide important information. Consequently temporal changes in stability metrics should be assessed
to allow for a correct interpretation of the metrics.

In previous studies [5,20], the utility of stability metrics such as standard deviation of the NDVI
anomaly (SD; indicator of variance), autocorrelation at lag one of the NDVI anomaly (AC; indicator
of resilience) and the correlation of NDVI anomaly (CS) with SPEI (Standardized Precipitation and
Evaporation Index; indicator related to resistance), has been explored at the global scale. These studies
indicated the potential of such metrics for detecting changes in vegetation stability and trends in
vegetation cover associated with climate and land use change. Therefore, this study aims to test the
usefulness of decomposing the NDVI time series signal into these metrics of vegetation stability for
a regional environment subject to major climate fluctuations. More specifically, starting from a stability
assessment on the complete time series, we aim to assess: (i) the magnitude and direction of stability
changes; and (ii) the similarity in these changes for different stability metrics, which are indicators of
resistance, resilience and variance. This study thus does not aim to draw detailed conclusions based on
stability changes, but rather to investigate the usefulness of the concept. In order to frame the obtained
stability metrics and changes in stability, the magnitude and direction of temporal vegetation stability
changes will subsequently be linked to land cover types and changes in climate anomalies.
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2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

To study non-stationary vegetation response, we selected Australia as a study area.
Australia contains a large variety of climate conditions and vegetation types ranging from humid
warm climates with tropical rain-forests and eucalyptus forests in the north and northeast to arid warm
climates with shrub-lands, hummock and tussock grasslands in the center to cool season wet climates
in the south with a higher fraction of pasture and croplands. The precipitation and temperature
variation across the continent provides a wide range of dynamic land surface behaviors (Figure 2)
for comparison.

Figure 2. Proof of concept: Illustration of the variety of vegetation dynamics in Australia. (A) Sinusoidal
winter (e.g., southeastern crop lands); (B) sinusoidal summer (e.g., northern woodlands); (C) forests;
and (D) arid lands. The left panel illustrates the location for which the NDVI time series in the right
panel is shown.

Moreover, the probability that altered vegetation dynamics are present and can be detected in
Australia is high. Australia is a water-limited continent, subjected to highly variable precipitation
patterns [21–23] due to, amongst others, the North Atlantic Oscillation (NAO) and El Niño–Southern
Oscillation (ENSO) cycle [24,25]. Yet, over the past thirty years, the western part of the continent has
received an upwards trend in precipitation, whereas precipitation in the eastern part decreased.
The majority of the continent experiences a green-up, which is partially due to an increase in
non-deciduous perennial vegetation [13]. These climatic changes, land cover changes and altered
vegetation vulnerabilities are potential causes of non-stationary behavior [26–28], as illustrated in
Figure 3. Furthermore, the limited and variable water availability, low NDVI saturation and relatively
low cloud cover allow one to derive stability metrics with a relatively low model error from NDVI
time series [20] and increase the likeliness that non-stationary behavior can be detected.
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Figure 3. Proof of concept: illustration of potential causes of stability change using simulated time
series. The case (A) illustrates the Normalized Difference Vegetation Index (NDVI) response (top panel)
of a forest showing an increased vulnerability to disturbances. The increased vulnerability is reflected
by an increased variance and slower recovery rate (bottom panel; characterized respectively through
the standard deviation (SD) and auto-correlation at lag 1 (AC) of the NDVI anomalies (center panel)).
Similarly, the case in (B) illustrates the conversion of forest to cropland, the case in (C) shrubland
subjected to a weakening monsoon, the case in (D) conversion from rainfed to irrigated pasture and
the case in (E) increased rainfall in arid areas.

2.1.2. Land Cover Data, NDVI and Climate Time Series

NDVI Data

In order to quantify vegetation response, bimonthly 0.07◦ GLCF Global Inventory Modeling and
Mapping Studies (GIMMS) NDVIg [29,30] time series were obtained over the 1982 to 2006 period.
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After the removal of low quality data using the associated quality flags, i.e., flags not equal to zero,
the data were temporally averaged to monthly data in order to agree with the climate data. Time series
having less than ten non-adjacent missing values were subsequently linearly interpolated. Time series
having more than ten missing values or adjacent missing values were discarded in order to avoid
inserting bias into the stability metrics.

Climate Data

Monthly 0.5◦ time series of the Standardized Precipitation and Evapotranspiration Index
(SPEI; [31,32]) were used to quantify drought over the 1982 to 2006 period. The SPEI is a site-specific
drought indicator based on deviations from the average water balance. The latter was defined as
the precipitation minus potential evapotranspiration over a specific time scale. Positive/negative
SPEI values therefore indicate wetter/dryer periods than average. A three-monthly time scale was
used to maximize its correlation with vegetation dynamics and reduce the influence of noise [33,34].
Although vegetation may show variable lag effects, depending on the vegetation and environmental
characteristics, a single time scale has been used to keep the results synoptic. The data were further
resampled from the 0.5 grid to the 0.07◦ GIMMS grid.

Land Cover Data

The Australian vegetation was characterized based on (i) the type and degree of
disturbances and (ii) its land cover. To characterize the type of disturbances, Australia was
split into two main parts using the average 0.05◦ yearly precipitation over 30 years (1977 to
2006; [35], http://www.auscover.org.au/xwiki/bin/view/Product+pages/). Regions having a yearly
precipitation lower than 200 mm were classified into arid lands and rangelands, whereas regions
receiving more than 200 mm precipitation were considered to be productive lands. Arid lands or
rangelands tend to be more natural, resilient and operate on relatively long cycles (i.e., due to changes
in precipitation). In reverse, productive lands are more heavily altered and utilized. They contain
both native and introduced vegetation and are subjected to a mixture of disturbances, such as climate
anomalies, land clearing, fires and grazing.

Land cover was described using the Dynamic Land Cover Dataset [36], which contains
34 land cover classes, ranging from cultivated land covers (e.g., pastures) to natural land cover
(e.g., tussock grasslands) and was created through the clustering of MODIS EVI time series
characteristics. The 0.0023 degree land cover dataset was resampled to the GIMMS grid through
assigning the land cover class covering the largest part of the pixel (i.e., the dominant land cover type).
These dominant land cover classes had a 10 and 90 percentile cover of 39% and 93% of the GIMMS
pixels, respectively.

2.2. Methodology

1. The vegetation response and climate anomaly were extracted from the NDVI and climate time
series (Section 2.2.1).

2. Stability metrics were calculated over a running window of the anomaly time series, resulting in
new time series of stability metrics.

3. In order to quantify how much the stability changes over time and whether the stability generally
increases or decreases, two non-stationarity metrics were defined: the magnitude and direction of
stability change (Section 2.2.2).

4. The non-stationarity of each stability metric was linked to vegetation and environmental
characteristics to enhance their interpretation.

2.2.1. Non-Stationary Anomaly Time Series

The NDVI and climate time series can be decomposed into three main components, each of
which may change over time: (i) the seasonality; (ii) the trend; and (iii) the anomaly. The NDVI
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seasonality reflects vegetation phenology (e.g., timing of greening and senescence). Trends may
be caused by sensor drift or very gradual vegetation response (i.e., greening or browning due to
altered management or gradual degradation). Finally, the remainder or anomaly is determined by the
vegetation response to disturbances such as droughts and noise (e.g., negative spikes due to clouds
or high aerosol concentrations) [37,38]. As the stability metrics aim to characterize the short-term
vegetation response, the anomaly component needs to be extracted.

In order to obtain each of the three time series components, while taking non-stationary behavior
(e.g., gradual and abrupt changes) into account, the Breaks For Additive Season and Trend (BFAST; [37])
algorithm was applied on the NDVI time series. The BFAST algorithm iteratively splits the time series
in each of the three time series components, where breakpoints and their associated confidence intervals
are estimated for the seasonality and trend time series. As such, this algorithm allows one to define
anomaly time series while explicitly accounting for non-stationary seasonality and trends.

2.2.2. Quantifying Non-Stationarity of the Short-Term Vegetation Response

Short-term vegetation response was subsequently characterized using three stability metrics
on the anomaly time series: (i) the standard deviation (SD) of the NDVI anomaly time series;
(ii) the auto-correlation at lag one (AC) of the NDVI anomaly; and (iii) the correlation between
the NDVI anomaly and SPEI time series (CS) (Figure 4). The latter two metrics were obtained by
modeling the NDVI anomaly in function of the drought index and the lagged NDVI anomaly, where
all time series were standardized [20]. More information about these metrics can be found in Table
1. In order to break down vegetation response temporally, these metrics were applied on a moving
window of twelve years, resulting in time series of each stability metric. The magnitude and direction of
changes in stability were then defined as (i) the range (90th percentile to 10th percentile of the stability
metric) and (ii) the slope of the stability metric. The latter was obtained using the non-parametric
Kendall τ rank correlation coefficient [39,40], where non-significant slopes (i.e., p-value > 0.05) were
considered not to differ from zero. Positive slopes indicate an increase of the stability metric over time.
An overview of the methodology can be found in Table 1.
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Figure 4. Illustration of changing vegetation response characteristics: (a) stationary time series; (b) time
series with increasing standard deviation (SD); (c) time series with increasing auto-correlation (AC);
(d) two time series with decreasing correlation (CS).
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Table 1. Overview of the methodology and interpretation of the used metrics/time series components.
BFAST, Breaks For Additive Season and Trend.

Metric/Component Interpretation

1. Anomaly extraction

BFAST anomaly
Anomalies with respect to non-stationary seasonal and
trend components. Positive/negative values indicate
a higher/lower vegetation greenness (NDVI) than average.

2. Calculation of stability metrics over a 12-year running window

Standard deviation of the NDVI
anomaly (SD)

Indicator of variance. Large/small values denote a large/
small variability.

Auto-correlation at lag one of the NDVI
anomaly (AC)

Indicator of resilience (memory effect of the biomass
response). Large absolute values of the auto-correlation
indicate a large memory effect, i.e., a slow return to
equilibrium or low resilience. For a positive auto-correlation,
the anomalies are similar to the previous anomaly,
whereas for a negative value, the anomalies are similar to
the previous anomaly, but with the opposite sign.

Correlation NDVI anomaly: SPEI (CS)

Indicator related to resistance (immediate response of the
vegetation greenness to drought). Large absolute values
denote a low resistance, and positive/negative values
indicate that a higher greenness than average is associated
with a higher/lower water availability than average.

3. Quantification of non-stationarity metrics

Range of stability metric time series
Magnitude of stability metric change. The larger the range,
the more the extremes of the stability metric deviate
over time.

Slope of stability metric time series
Direction of stability metric change. Positive/negative
slopes indicate that the metric overall increases/decreases
over time.

Although the time series of the SD and AC metric provide interesting information concerning
changes in vegetation response, they do not account for temporal variability of climate anomalies.
For example, the standard deviation of an NDVI time series may increase because the number of
precipitation extremes increases, while its response intrinsically remains the same. In reverse, if the
climate anomaly characteristic remains the same and the variability of the NDVI anomaly increases,
vegetation may becomes more sensitive over time. Similarly, an increase in the duration of droughts
may increase the auto-correlation of the NDVI time series. To reveal the relation between the dynamics
in the NDVI anomalies and the climate anomalies, the Kendal τ rank correlation coefficient was
calculated between the AC or SD time series of the NDVI anomaly (i.e., derived using the moving
window) and the AC or SD time series of the climate anomaly.

3. Results

3.1. Stability Derived over the Complete Time Period

In order to frame temporal stability changes, each of the stability metrics were first derived over
the complete time period. These metrics illustrate that vegetation response clearly differs spatially
and is linked to the land cover types and environmental conditions (Figures 5 and 6). For example,
the tussock grasslands on vertisols (deep cracking clay soils) delimit an area having the highest
variability and a large, negative response to droughts (i.e., high value for the variance metric (SD)
and drought response metric (CS)), but show a relatively low memory effect (i.e., low value for the
resilience metric (AC), thus high resilience). In reverse, chenopod shrubs on calcarosols in the south
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and shrubs in the western part of Australia have the highest memory effect (i.e., highest resilience
metric (AC), thus low resilience) and show a mediocre variance (SD) and response to droughts (drought
response metric (CS)). The majority of the arid region is further associated with a low NDVI variability
(variance metric (SD)), mediocre memory effect (resilience metric (AC)) and relatively high resistance
to droughts (low drought response metric (CS)).

Figure 5. Spatial overview of (A) the land cover type; (B,D,F) stability metrics derived over the whole
time series length and (C,E,G) increase/decrease in stability given by the slope of the stability metrics
derived over a running window for three stability metrics: (B) to (C) the standard deviation (SD);
(D) to (E) the auto-correlation at lag 1 (AC); and (F) to (G) correlation between the NDVI anomaly and
Standardized Precipitation and Evapotranspiration Index (SPEI) (CS). Insignificant (p > 0.05) AC and
CS metrics were masked.

Furthermore, although most pixels show a significant memory effect (i.e., resilience metric (AC)),
large areas show no significant correlation with the drought index (drought response metric (CS)).
The northern and southern part of the region with an insignificant response to droughts is situated in
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areas having tree vegetation. These areas are also associated with a mediocre variance (SD) and the
lowest memory effect (i.e., lowest resilience metric (AC), highest resilience). Besides tree vegetation,
also the northeastern area, which is sparsely vegetated with hummock grasses, shows a insignificant
response to droughts (drought response metric (CS)), has the lowest variance metric (SD) and a low
memory effect (low resilience metric (AC), high resilience).

Figure 6. Overview of the mean (symbol) and spatial variability (error bar) of the stability (grey) and
range in stability (color) per land cover type for three stability metrics: (A) standard deviation (SD);
(B) auto-correlation at lag one (AC); and (C) correlation of the NDVI anomaly with the Standardized
Precipitation and Evapotranspiration Index (CS). The shape of the symbols represent the disturbance
regime/land use: arid lands/rangelands (o) and productive lands (x). The pixels for which the stability
metric derived over the whole time series length was not significant were not taken into account, and
land cover types containing less than 100 pixels were discarded.

3.2. How Much Does Vegetation Stability Change over Time?

Although the stability metrics derived over the complete time period show spatial patterns that are
related to vegetation and environmental characteristics, the vegetation response may change over time.
The change magnitude (range of the temporal stability metric changes) is dependent on the stability
metric considered (Figure 6). For example, the change magnitude of the stability metrics comprised
about 12% to 33%, 15% to 25% and 50% of the absolute value of the variance (SD), resilience (AC) and
drought response (CS) metrics derived over the entire time period, respectively.
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Another aspect associated with the temporal stability metric changes is its variability between land
cover types. Although the differences are relatively small, the change magnitude (range of the temporal
stability metric changes) differs between land cover types. For example, sparse chenopod shrubs and
scattered shrubs show the largest temporal changes in the variability metric (SD), while changes
are relatively small for open hummock grasses and sparse shrubs. For the drought response metric
(CS), the tussock grasses show the largest temporal change. Furthermore, the change in the drought
response metric (CS) for land cover types in the arid areas is smaller compared to their counterpart
in the productive areas (0.0154 on average), while the differences are very small for the other metrics
(0.00008 and 0.007 for the SD and AC, respectively). Yet, due to the relatively small differences in
change magnitude between land cover types, the change becomes more important for land cover types
having a small overall stability metric (e.g., changes in the variability metric (SD) or drought response
metric (CS) for open hummock grasses).

3.3. Is Vegetation Response Becoming More/Less Stable over Time?

Except for the southeastern part of Australia, most of the Australian vegetation shows an increase
in the variability metric (SD) over time, while its resilience metric (AC) tends to decrease (Figure 5c,e).
The vegetation response to wet and dry periods (Figure 5g) increases in the western part of Australia,
except for the agricultural area in the south, which shows a decrease in drought response. Furthermore,
the majority of the vegetation in the eastern part of Australia shows a decrease in drought response (CS).

These spatial differences reflect differences between land cover types. The variability metric (SD)
tends to increase the most for the hummock grasslands, shrublands and chenopod shrubs, while their
memory effect (resilience metric (AC)) tends to decrease. The decrease in drought response metric
(CS) is mostly apparent for both sparse and open tussock grasslands (Figure 7), which also showed
the highest overall response to droughts (Figures 5 and 6). In reverse, the shrublands showed the
smallest decrease in drought response. Finally, no differences in trends of the stability metrics between
arid and productive lands can be observed, except for the variance metric (SD): tussock grasslands,
hummock grasses, scattered and chenopod shrubs located in arid regions tend to show a larger increase
in variability (SD) compared to the land cover types located in productive lands.

Figure 7. Cont.
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Figure 7. Overview of the temporal slope of the stability metrics ((A) standard deviation (SD),
(B) auto-correlation (AC) and (C) cross-correlation between the NDVI and climate time series
(CS)) for each land cover type (bar color) and disturbance regime (PR: productive lands; AR:
arid lands/rangelands). A red-orange color indicates that the stability decreased (i.e., the absolute
value of the metric increased), while a blue-green color denotes an increase in stability (i.e., the absolute
value of the metric decreased). Red and blue colors suggest a consistent change, while for yellow-green
colors, the change is less consistent. The pixels for which the stability metric derived over the whole
time series length was not significant were not taken into account, and land cover types having 100
pixels or less were discarded.

These changes in vegetation response can partially be linked to changes in climate conditions
(Figure 8). Most of the pixels show a positive association between the variability in vegetation
response (variance metric (SD) of the NDVI) and the variability in drought conditions (variance metric
(SD) of SPEI). In other words, an increase/decrease in climate variability is associated with
an increase/decrease in vegetation response variability. Yet, the association between the memory
effect (resilience metric; AC) of the climate and vegetation response is negative for vegetation in
central-west Australia: longer drought/wet periods are associated with a lower vegetation memory
effect (higher resilience). Furthermore, the tau coefficient of the climate-vegetation relationships is
not large (mostly smaller in absolute values than 0.6), and about 10% of the pixels do not show a
significant relationship.

Figure 8. Cont.
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Figure 8. Overview of (A) the trend in Standardized Precipitation and Evapotranspiration Index (SPEI)
over time and the non-parametric correlation coefficient Kendall’s tau for the stability metrics derived
on the NDVI anomaly and climate time series: (B) to (C) a spatial overview and (D) to (E) overview
per land cover type and disturbance regime (PR: productive lands; AR: arid lands/rangelands) for the
(B,D) standard deviation (SD) and (C,E) auto-correlation at lag one (AC). Bar plots with a red-orange
color indicate that changes in stability metrics on the SPEI are positively associated with changes in the
NDVI anomaly (e.g., periods with low/high SD of the NDVI anomaly are associated with periods of
low/high SD of the SPEI), while a blue-green color denotes negative association (e.g., periods with
low/high SD of the NDVI anomaly are associated with periods of high/low SD of the SPEI). Red and
blue colors suggest a strong association, while for yellow-green colors, the association is less strong.
The pixels of which the stability metric derived over the whole time series length was not significant
were not taken into account, and land cover types having 100 pixels or less were discarded.

4. Discussion

Starting from stability metrics derived using the complete time series period, this study quantified
the magnitude and direction of temporal vegetation response changes in Australia.

The stability metrics derived over the complete time series length showed that the spatial
patterns of the stability metrics are related to those of the land cover types. For example, the tussock
grasslands show a large variability and dependency on water availability, but a relatively low memory
effect. This could partially be explained by their association with vertisols (i.e., deep cracking clay
soils). These clay-rich soils are relatively fertile, but tend to form deep cracks during dry periods.
Due to the important changes in soil conditions, vegetation biomass may fluctuate, as well, to a
large extent. Tree-based land cover types and hummock grasses in the western part of Australia
showed a insignificant relationship with droughts, but also a low memory effect and low to mediocre
variability. This could suggest that these areas are one of the most stable of Australia: they recover
relatively quickly and show nearly no response to droughts. Yet, other factors may also explain this
type of response: (i) the hummock grasslands may be extremely sparsely vegetated, hampering the
measurement of vegetation response; (ii) the NDVI response may saturate with relatively high LAI for
tree vegetation in combination with (iii) a higher number of clouds in northern areas. These factors
decrease the signal to noise ratio of the anomaly signal, complicating its ecological interpretation.

Next to the assessment of stability over the complete time period, temporal changes in stability
were obtained. The temporal changes illustrate that the magnitude of temporal vegetation response
change is relatively large compared to the stability metric derived over the complete time series
period. This relatively large temporal variation has both technical and ecological consequences. First,
the relatively large temporal variation in the stability metrics implies that vegetation response should
not be considered as a constant, and this variability should be accounted for in vegetation stability
assessment. Consequently, methods that are based on techniques implicitly assuming stationarity and
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using the whole time series period may not be optimal (e.g., [20]). Modification of these techniques,
i.e., through the use of a moving window, the allowance of break-points or the explicit inclusion
of changing response may be of interest. Second, the stability metrics, and certainly the response
to droughts, will depend on the used time series time frame and time series length. Consequently,
the results may differ between sensors or platforms, but also between the first and second part
of the time series. The latter was also found in the study of [5], where the sensitivity of stability
metrics to data characteristics and noise were assessed. Third, the result suggests that vegetation
response changed over the 1982to 2006 period in Australia. As such, the assessment of these changes
may reveal additional information about the vegetation response and may be interesting to monitor
vegetation response.

The observed change in vegetation response may be an indicator of altered vegetation stability
and may even be a precedent of regime shifts. A rise in SD or AC over time has for example been
recognized as a possible indicator for regime shifts in both climatic systems and ecosystems [8,9,11].
Yet, the spatial overview of temporal changes of the three stability indicators indicates that the metrics
generally do not change in concordance. For example, the increased standard deviation and correlation
with the SPEI index in the western part of Australia suggests that vegetation has become more sensitive
and response more variable over time, while the auto-correlation shows a mixed result. The shrub
and hummock dominated northern part shows an increased resilience, while the tree and agriculture
dominated southern part shows the opposite. Vegetation thus tends to react in a more complicated
way, which supports the need to assess multiple stability indicators.

Comparing the increase in standard deviation and auto-correlation with the resilience metric
of [41] in Australia further reveals contrasting patterns. This means that the probability of being in
another state is not directly related to the change in stability. The analyses thus warn for a ‘blind’
application of the stability metrics on remote sensing data to assess vulnerability. As we did not
test what exactly causes this lack of coherence, it is difficult to pinpoint just one cause. The remote
sensing time series could still be too short to capture the increase in SD and AC that is supposed to be
associated with ecosystems reaching a tipping point. Next, the states as defined by [41] are relatively
broad (i.e., forest, savanna and treeless). The sensitivity observed in our study could be related to
more subtle changes than these broad conversions or ecosystems could behave in a different way
than expected.

Furthermore, several factors may influence the observed changes in vegetation response. Both the
standard deviation and auto-correlation indicate how the vegetation response changes over time,
but not how these changes are related to environmental anomalies. The variance and memory effect of
the vegetation may thus increase because the disturbance regime alters, while the vegetation remains
inherently the same. This is partly confirmed by the significant positive rank correlation between
changes in SD of the NDVI and climate anomalies for most of the pixels. This suggests that changes in
vegetation response are partly driven by changes in climate anomalies, which is logical given the large
dependency of vegetation in Australia to water availability and climate conditions (e.g., [42]).

Yet, not all pixels show a simultaneous change in climate and vegetation anomalies, which may
also be attributed to other environmental pressures. Australia has experienced a large influence of
human activity (e.g., [21,43]), which may alter the vegetation response in a different way than expected
from natural processes. As such, these conversions may hamper the interpretation of vegetation
response changes as an altered sensitivity to climate anomalies. Other pressures than climate may
further affect the vegetation state: factors such as altered fire regimes, overgrazing, introduction of
invasive species and salinization are important, as well, and may furthermore alter the response
of vegetation to climate anomalies [21,44–46]. Moreover, CO2 fertilization, altered fire and rainfall
regimes may change the vegetation composition, which was suggested in the study of [13]. This may
further be aggravated by the low spatial resolution of the GIMMS NDVI dataset. The low resolution
results in variable fractional values of the dominant land cover type and increases the multitude of
vegetation responses within a pixel, therefore complicating the interpretation. An analysis using higher
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resolution data in combination with a more complete set of drivers may provide a more detailed
insight into the importance of each of these drivers and their relation with spatio-temporal changes in
stability metrics. This however fell outside the scope of this study.

Finally, an undesirable and yet unavoidable factor of changes in stability metrics is the
presence of noise in the time series [5]. For example, the presence of clouds, high aerosol contents,
image misregistration, Bidirectional Reflectance Distribution Function (BRDF) effects and sensor
artifacts may introduce trends, white noise (i.e., random noise due to the combined effect of noise
factors) and biased noise (e.g., negative spikes in the time series due to clouds), which may in
their turn severely affect the stability metrics. As clouds and aerosol concentrations are not only
highly spatially, but also temporally variable, the observed changes in stability may be affected,
as well. However, the studies of [5,20] already showed that the signal-to-noise factor of the NDVI
anomaly time series in Australia is relatively high, thus increasing the probability to reliably detecting
changes. Moreover, the highest influence of noise was found in forested, tropical or completely bare
areas, whereas semi-arid areas showed the highest signal-to-noise ratio [5,20]. The former areas were
mostly masked in the CS analysis, as they did not show a significant correlation. Yet, a ground-based
assessment of biomass stability would be interesting for further validation.

5. Conclusions

Overall, this study illustrates the importance of the temporal dimension in remotely-sensed
stability studies. A large part of the Australian vegetation showed an increase in variability over time,
while its memory effect decreased. The association of biomass anomalies with drought events showed
a mixed response: the association increased in the western part, while it decreased in the eastern part.
The variation in vegetation response and its relationship with changing climate characteristics may as
such reveal interesting additional information of vegetation dynamics and the impact of environmental
changes on vegetation biomass production stability.
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