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Abstract

Seasonal forecasts of the Earth’s landscape and vegetation can be very valuable
information to overcome modern-day problems such as climate change, hunger, and
natural disasters. Satellite images, which are frames of the Earth’s surface, can
provide a lot of information for making such seasonal forecasts. Moreover, it is highly
available data accessible over an extended range of 8 years back in time. Having
large-scale and long-term historical data simplifies the process of training and testing
artificial neural networks for landscape predictions. Forecasting those images, with
the help of additional parameters, can help predict the future conditions of the
Earth’s surface. EarthNet2021 is an open-source challenge that provides a large
dataset suitable for training deep neural networks on this task. It contains 32,000
samples of satellite imagery covering 2.56 x 2.56 km in 128 x 128 pixels, which are
already pre-processed and ready to be used as input data for prediction systems.
The existing literature, which includes baseline models provided by EarthNet and
new extensions of these, provides a starting point for the analysis in this thesis.
The thesis first trains the various models and chooses the currently best suitable
model for landscape prediction. It then analyses the source of the limited prediction
accuracy of the chosen model. The analysis shows that the prediction accuracy
varies according to the location of the satellite frames, the greenness variation for
each image time series, and the land usage of each area. Central Europe exhibits
the lowest prediction accuracy among the studied regions; regions with moderate
variation in greenness have a minimal EarthNet prediction score; and landscapes
classified as croplands also display poor prediction performance. These findings lead
to the recommendation to tune the training and testing of artificial neural networks
for landscape prediction on specific landscapes. To complete this thesis, a use case is
developed to demonstrate how the landscape is changing according to manipulated
weather variables. The model was implemented and analyzed with the use of the
programming language Python and expanded with Deep Learning libraries such as
PyTorch.
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Chapter 1

Introduction

This chapter introduces the topic of the thesis by first explaining the motivation,
followed by the objectives and key questions of this project. It then gives an overview
of the existing literature. Finally, it gives the requirements and lays out the structure
of this thesis.

1.1 Motivation

Vegetation landscapes are important in ecological systems, climate regulation, and
human well-being. Landscape prediction based on Sentinel-2 data and their response
to climatic variables is beneficial for effective land management, conservation efforts,
and climate change mitigation [17, 7, 9]. The integration of artificial intelligence
(AI) models with satellite imagery and weather variables has emerged as a powerful
approach to foreseeing vegetation patterns and improving predictive capabilities.
However, the existing models have performance limitations as vegetation landscapes
are intricate ecosystems influenced by multiple factors including climate, soil proper-
ties, land use, and other disturbances [10]. Changing the model’s architecture and
parameters doesn’t seem to achieve high distinctions in performance. This circum-
stance prompted further investigation into the data and predictions, considering
that all models rely on the identical EarthNet dataset. Understanding the cause
of the limitations could help to understand what should be focused on to improve
the models. Additionally, this process helps to refine the scope of the predictions,
narrowing down their objectives. Explaining the source of low accuracies can help to
improve the prediction of vegetation patterns. Their responses to climatic variables
are essential for assessing ecosystem health and sustainable land management.

Satellite imagery is highly available and large datasets can be obtained by
processing open-source images. This project will use the EarthNet2021 dataset,
which represents a collection of Sentinel-2 satellite imagery and complementary
weather variables [18]. Additionally, this data has been complemented with image
masks that represent cloud pixels and the European digital elevation model (EU-DEM)
[2]. This dataset provides a rich source of information capturing the spatiotemporal
dynamics of vegetation landscapes. Moreover, the inclusion of weather variables, such
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1. Introduction

as precipitation, sea pressure, and temperature enables comprehensive investigations
into the correlation between climatic factors and vegetation dynamics.

AI models, particularly those employing machine learning algorithms, exhibit
several key advantages in vegetation landscape prediction. Firstly, AI models have the
capability to capture complex, nonlinear relationships between vegetation patterns
and environmental variables. Secondly, these models can efficiently handle vast
amounts of high-dimensional data, enabling the incorporation of multiple satellite
image channels and weather variables. Lastly, AI models are adaptable and can learn
from diverse datasets, facilitating the transferability of knowledge across different
geographical regions and vegetation types.

1.2 Objectives

The main objective of this project is to choose and implement the best-performing
model trained on the EarthNet2021 dataset from the literature and analyze its
behavior and prediction results. A convolutional long short-term memory (ConvL-
STM) model proved to be under the best-performing models and uses a suitable
architecture to predict landscapes from Sentinel-2 data with additional weather
variables. This thesis will first train the ConvLSTM on Sentinel-2 satellite imagery
(time series with additional weather variables) to achieve its best performance. This
is followed by an analysis of what causes its limitations in performance. Finally,
a use case is demonstrated where the data is manipulated to scenarios that are
predicted to be the future climate change. Specifically, the project is divided into
two steps: 1) answering the following key question, and 2) demonstrating the use case:

Key question: What causes the limitation of performance in the ConvL-
STM model predicting satellite imagery, based on a Sentinel-2 dataset
with additional climate variables?
Here the focus of the analysis lies on the predictions of the chosen ConvLSTM model.
The outcome of the neural network will be studied on aspects such as location,
greenness variability, and land cover of the surfaces. Based on this an explanation
will be given, as to why the model performs poorly for certain landscapes with
specific properties.

The challenge that comes with this analysis is to find a pattern in the predictions
of the model. Instead of checking the overall performance, the accuracy of predictions
will be reviewed on different features for various locations across Europe. The
performance is analyzed based on different variables such as greenness variation,
similarity score, and land cover. This gives an insight into which patterns in
landscapes result in poor prediction and influences the overall performance in a
negative way.

Overall, the analysis can be split into three different experiments:

• Location:
This experiment investigates the performance of the chosen model according
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to its location. Multiple locations across Europe are tested and the score is
analyzed.

• Greenness variation:
Here, the variation of the image greenness is taken for every time series sample.
This is compared to other variables such as the EarthNet score, location, and
similarity index.

• Land cover:
The last analysis investigates the land cover of every location. The type of
land usage is compared to the performance, location, and greenness variability.

Use case: How will the landscape change if the climatic variables get
manipulated?
This demonstration shows how landscape prediction changes when the climatic input
gets modified. For this, two scenarios will be laid out corresponding to KNMI14
climate scenarios [1]. This is a prediction for the Netherlands, how the climate will
change in 2050 and 2085. Mainly, the two variables (temperature and precipitation)
will be exploited.

1.3 Existing literature

The EarthNet2021 challenge [18] is an ongoing open-source competition to study
surface forecasting based on satellite imagery. It provides a pre-processed dataset
with multiple components including different landscape information. There are
given baseline models which can be used to get started. The goal is to challenge the
participants to improve the earth surface prediction with deep learning models. There
are guidelines that allow participation in this challenge. The challenge itself published
3 baseline models to help participants to kickstart their projects. Next to that, the
competition’s leaderboard shows some improved, open-source publications. This
section explains the concepts of the existing models and compares their approaches.
First, the three baseline models get laid out, after which the published improvements
are shown. An overall comparison will be made and a suitable model will be chosen
for further analysis.

1.3.1 Baseline Models

In this section, the three baseline models provided by EarthNet2021 are reviewed
and compared. The models are called Persistence, Arcon, and Channel-U-Net. These
models are very helpful to start off projects related to the EarthNet2021 challenge.
As the database structure remains the same, those models can introduce participants
to the possibilities of data processing, training, and testing. Additional variables
such as the static topography and climatic condition can be used as conditioning
parameters, which is also demonstrated in the baseline models.
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1. Introduction

Persistence

This model is a method that applies simple averaging. The EarthNet2021 toolkit
provides a baseline based on NumPy. This method averages all non-cloud classified
pixels over the context frames and uses this result as a prediction [18].

Arcon

This baseline is based on stochastic adversarial video prediction (SAVP) [14]. At first,
it was used as an unguided/weakly guided deep learning model, but the EarthNet2021
challenge transformed it into a variables-guided model. This was achieved by using
the climatic variables as extra video channels. For this, these daily frames had to be
recalculated to their corresponding 5-daily mean. Initially, the SAVP model was used
for video data, but because this use case includes only static images, all components
for the motion prediction were disabled. The Arcon model was trained with the mean
absolute error over non-cloud-covered pixels (non-masked L1 loss), corresponding to
omitting the adversarial loss.

Channel-U-Net

This solution proposes a U-Net architecture with dense connections between the
model’s layers [20]. All available input information was stacked as channels and
provided to the network. This procedure transforms the U-Net into a Channel-U-Net.
The Channel-U-Net specifically used for the EarthNet2021 use case is implemented
with an ImageNet [5] pre-trained DenseNet161 encoder [11] provided by the Python
library PyTorch. The input of this network includes 10 5-daily context frames, the
EU-DEM data with the same resolution, and the upsampled meteorological predictors
to match the other’s resolution. This all adds up to 191 input channels that are fed
into the model. The output on the other hand corresponds to 80 channels including
the four color channels of the future 20 5-daily prediction frames. The model was
trained by the EarthNet2021 team for 100 Epochs with the following configuration:
Masked L1 loss with Adam [12], an initial learning rate of 0.002 (decreased by factor
10 after 40, 70, and 90 Epochs), a batch size of 64 and 4 x V100 16GB GPUs.

1.3.2 Submitted Models

There are two participants in the EarthNet2021 challenge that submitted their models
leading to improved results compared to the baseline models. Both use similar
approaches by choosing the convolutional Long Short-Term Memory (ConvLSTM)
networks as architecture. The first participant, a research group from the University
TU Muenchen, submitted a model called Diaconu ConvLSTM [6]. This was followed
by a second initiative by a research group at ETH Zuerich introducing two models
called SGConvLSTM and SGEDConvLSTM [13]. Both submissions will be studied
and analyzed. A final comparison of each other and also to the baselines will finalize
this section.
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Diaconu ConvLSTM

The ConvLSTM model has been trained on red, green, blue, and near-infrared
(RGBNIR) frames, the weather conditions, and the EU-DEM as input. For this, the
weather conditions had to be processed in order to make them usable. First, this
information was averaged over five days to make the time steps match the satellite
imagery. Second, the frames were scaled up to frames of 128 x 128 pixels to match
the other input data. The EU-DEM data was attached to each frame and provided
as additional input. All frames combined were stacked as channels resulting in input
data of the dimension 128x128x10. While iterating over the context frames the fully
combined input frames are considered. After exceeding t>c the previous predicted
RGBNIR frames are used as input for the current step. This is illustrated in Figure
1.1.

Figure 1.1: Training input of the ConvLSTM model: The context steps include the
satellite image for each time point, the cloud masks, weather variables, and EU-DEM.
In the target time steps the model uses as input the prediction of the previous step,
weather variables, and EU-DEM. [6]

The model consists of four stacked layers: The first layer has 10 input channels
and 32 output channels, the next two layers have both 32 input and output channels,
and the final layer has 32 input and 4 output channels. The final dimension matches
the required output size. The kernel size is 3x3 with a padding of one pixel. The
resulting total number of parameters is around 200k [6].

This model has proven to be suitable for the EarthNet2021 application for several
reasons. As it is a recurrent neural network (RNN), the temporal data that we
are dealing with can be processed easily in such an architecture. Next to that, the
provided masks for filtering the non-usable satellite imagery pixels can be used more
easily to learn the model to ignore these areas. The gating mechanism is suitable for
learning when to ignore certain areas through training on the context frames with
the included cloud-marked masks. Also, this architecture allows adding the current
weather variables in a straightforward manner. Providing weather information as
input can also be used as guidance for the prediction steps. This makes it easy to
turn this model into a guided network. Finally, it is clear that this model provides
much flexibility, and changes in input and variables can easily be adapted.
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1. Introduction

SGConvLSTM and SGEDConvLSTM

Similar to the previous model two modifications of a convolutional LSTM network are
presented. The models were implemented using the deep learning framework PyTorch
Lightning, which is built on top of PyTorch and enables improved scalability. The
hyperparameters were tuned using an Optuna-based hyperparameter optimization
procedure.

The first deep learning architecture is a ConvLSTM inspired by a convolutional
LSTM network [21], which is very similar to the architecture of the previous Con-
vLSTM model [6]. The model is called SGConvLSTM to reflect aspects related
to the strongly guided (SG) modeling task. As shown in the following Figure 1.2
the process of guidance with the weather variables is the same during training.
The context frames include all channels representing the stacked data of RGBNIR,
weather variables, DEM, and cloud masks. In the target time period, the prediction
is guided by the weather variable, DEM, and the RGBNIR frames of the previous
time step as input.

Figure 1.2: Training input SGConvLSTM: The input for the context time period
consists of the landscape frames, E-OBS, EU-DEM, and cloud masks. In the target
time range only previous predictions, E-OBS, and EU-DEM are fed into the model
for prediction. [13]

The second model that was implemented by the same participants was the
SGEDConvLSTM, which stands for an Encode-Decoder architecture. Such an
architecture consists of two multilayer LSTM networks. The sequential output is fed
to the first network (encoder) and as input to a second network (decoder) at each
time step. Both networks, encoder, and decoder, require to have the same depth for
this architecture. In this manner, another dimension of parameterization is added to
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the network without having to resort solely to stacking LSTM cells on top of each
other. For the SGEDConvLSTM, the same hyperparameters are used as for the
SGConvLSTM, except for the number of hidden channels, which was increased to 22
[13].

1.3.3 Overall comparison

The discussed baselines and submitted models are compared according to their scores
for the test sets provided by EarthNet2021. The scores for the in-domain (IID) test
images and out-of-domain (OOD) robustness test track are the most interesting for
this comparison. The general EarthNet score (ENS) contains multiple components
(MAD, OLS, EMD, SSIM) and is explained in Chapter 3. It should be mentioned that
the last two models SGConvLSTM and SGEDConvLSTM [13] outperform all other
models for the Extreme track, which is a special test set containing images of the
extreme summer in Germany of 2018. Also, the simple Persistence model performs
the best in the seasonal track (see Section 3.2), as generalization over a long period
of time seems to be hard to reach for the other models. Overall, the ConvLSTM
(Diaconu) is the best-performing one for the main track and the robustness track.
The other improvements to the baselines (SGConvLSTM and SGEDConvLSTM)
perform slightly worse but still improve the baselines significantly. This is shown in
Tables 1.1 and 1.2.

Table 1.1: Overall comparison IID

IID
ENS MAD OLS EMD SSIM

Persistence 0.2625 0.2315 0.3239 0.2099 0.3265
Channel-U-Net 0.2902 0.2482 0.3381 0.2336 0.3973
Arcon 0.2803 0.2414 0.3216 0.2258 0.3863
Diaconu 0.3266 0.2638 0.3513 0.2623 0.5565
SGConvLSTM 0.3176 0.2589 0.3456 0.2533 0.5292
SGEDConvLSTM 0.3164 0.2580 0.3440 0.2532 0.5237

Table 1.2: Overall comparison OOD

OOD
ENS MAD OLS EMD SSIM

Persistence 0.2587 0.2248 0.3236 0.2123 0.3112
Channel-U-Net 0.2854 0.2402 0.3390 0.2371 0.3721
Arcon 0.2655 0.2314 0.3088 0.2177 0.3432
Diaconu 0.3204 0.2541 0.3522 0.2660 0.5125
SGConvLSTM 0.3146 0.2512 0.3481 0.2597 0.4977
SGEDConvLSTM 0.3121 0.2497 0.3450 0.2587 0.4887
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1. Introduction

1.4 Requirements
The requirements that are needed for this thesis are first of all a powerful computer and
software for the interpretation of the data. The dataset was downloaded (500Gb) and
the AI model was trained locally. The program was executed within an Anaconda3
environment and with the help of the IDE Visual Studio Code. The tools used in
this thesis are the programming language Python combined with libraries such as
PyTorch, Numpy, and Pandas.

1.5 Structure
The next chapter elaborates on the background theory behind the implemented
convolutional LSTM network. The general architecture of these networks and the
combination between a convolutional network and an LSTM is explained. This
is followed by the third chapter which explains the EarthNet2021 dataset and its
different components. This involves the training and testing data, but also the
approach for testing and scoring. The fourth chapter contains the methodology
and describes the analysis done on the predictions. This is followed by the fifth
chapter, which includes the results of the performance of the trained model and the
exploration results of the predictions. The sixth chapter then demonstrates the use
case and gives the predictions of two climatic scenarios. Finally, the last chapter
provides a discussion of the results and an overall conclusion. Also, some suggestions
are given for future work.
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Chapter 2

Background theory:
Convolutional LSTMs

This chapter gives a theoretical explanation of the chosen model. As shown in Sec-
tion 1.3.3, ConvLSTM is the best-performing one and will be used to analyze the
predictions. The architecture of such a network is explained in the following section.

Convolutional LSTMs are a powerful architecture for modeling sequential data.
By combining the advantages of LSTM networks and Convolutional Neural Networks
(CNNs), ConvLSTMs can learn spatiotemporal features in image time-series data and
is able to extract important features from image data at the same time. An additional
advantage is that it’s trainable on spatiotemporal data with fewer parameters than a
fully-connected deep learning network [6].

The ConvLSTM consists of multiple units, where the data flows through. These
units consist of three internal gates that control the information. The three gates are
the input gate it (Eq. 2.1), the forget gate ft (Eq. 2.2), and the output gate ot (Eq.
2.3). Every single control gate works with its own assigned weights. Together, the
combination delivers a new input Xt, with stored data of the previous state Ht−1.
This is shown in the Equations 2.1-2.3, where ∗ denotes the convolution operator
and σ is the sigmoid function.

it = σ(Wix ∗ Xt + Wih ∗ Ht−1) (2.1)
ft = σ(Wfx ∗ Xt + Wfh ∗ Ht−1) (2.2)
ot = σ(Wox ∗ Xt + Woh ∗ Ht−1) (2.3)

The previously described gates are then used to update the long-term cell state
Ct and the corresponding hidden state Ht as described in the following Equations
2.4 and 2.5. In these formulas, · stands for the Hadamard product. Ct is obtained
with the new input Xt and the output from the previous step Ht−1 and additionally
with Hadamard product between the input gate ft and the corresponding previous
values Ct−1 filtered by the forget gate. Finally, the hidden state Ht is calculated by
the new cell state Ct cleared by the output gate.
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2. Background theory: Convolutional LSTMs

Ct = ft · Ct−1 + it · tanh(Wcx ∗ Xt + Wch ∗ Ht−1) (2.4)
Ht = ot · tanh(Ct) (2.5)

As mentioned, the ConvLSTM is a variant of LSTM (Long Short-Term Memory)
containing a convolution operation inside the LSTM cell. It is a special kind of
recurrent neural network (RNN). In a ConvLSTM the matrix multiplication is
replaced with a convolution operation at each gate in the LSTM cell. By doing
so, it captures underlying spatial features by convolution operations in multiple-
dimensional data. The traditional LSTM input data is one-dimensional, which makes
it not suitable for spatial sequence data such as satellite imagery. ConvLSTM is
designed for 3-D data as input and makes it therefore suitable for the application of
this thesis. In the following Figure 2.1 it is illustrated how one cell in a ConvLSTM
network is constructed [23].

Figure 2.1: ConvLSTM cell: Convolutional operation on input gate, output gate
and forget gate. The convolution is calculated between the kernel segment of two
images. [23]
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Chapter 3

Data

This chapter documents the dataset corresponding to the EarthNet2021 challenge.
First, an explanation of the structure of the data is given, followed by a description of
the testing tracks and the available scoring mechanism. Finally, the ESA WorldCover
data is explained.

3.1 EarthNet2021 dataset
The EarthNet2021 dataset is a collection of processed satellite imagery time series at
high resolution. Additionally, this dataset is extended with climatic predictors, which
ideally should come from a seasonal weather model. The EarthNet2021 challenge
approximates this from the E-OBS forecasts which contain the observation ground
truth over several locations in Europe [4]. The pre-processed set of images originates
from the public satellite mission Sentinel-2. The time series consists of satellite
imagery that is revisiting the same location on the Earth map every 5 days.

Figure 3.1: Structure of a mini-cube: 10 context frames and 20 target frames in
5-daily time steps. Additional weather variables: Precipitation, sea level pressure,
mean-, min-, and max-temperature. Extended with EU-DEM data.[18]
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3. Data

Overall, the EarthNet2021 dataset contains 32000 samples, where one sample
represents a mini-cube. One mini-cube contains 30 5-daily images of 128 x 128
pixels, which represents an area covering 2.56 km x 2.56 km. These frames consist
of four different channels which are the three RGB channels and an additional
near-infrared one. Also, each satellite image comes with a representative mask that
indicates how many pixels of the frame were covered by clouds. The 5-daily frames
are complemented with 150 daily frames of the E-OBS data with 5 meteorological
variables: Precipitation, sea level pressure, and mean minimum and maximum
temperature. This data is present at a mesoscale resolution where 80 x 80 pixels
comply to cover an area of 102.4 km x 102.4 km. Additionally, the EU-DEM elevation
model data is present in high- as well as mesoscale resolution. The structure of such
a mini cube is illustrated in the Figure 3.1.

Combining these components in a way that they are analysis-ready samples,
that can be split into a training and a test set, is very challenging. They need to
be processed and prepared to be accessible for deep learning models. First, the
Sentinel-2 imagery was downloaded by pre-filtering and only downloading a random
subset of 110 tiles. More information about the Sentinel-2 tiles can be found in
Section 4.2.1. This data was fused together with the climatic variable E-OBS and
the surface model data EU-DEM. This is accomplished by reprojecting, resampling,
and cutting the data into the desired shape. After this, the cubes could be generated
by creating the data mask and compressing all the data in one array. The following
Figure 3.2 shows the process of the fusion between the differentdata inputs.

Figure 3.2: Data fusion: Pre-processing steps to create the mini-cubes. Stepwise,
downloading Sentinel-2 data, fusing together with E-OBS and EU-DEM, generating
the compressed NumPy array with cloud masks, and splitting it into train and test
sets. [18]
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3.2. Testing tracks

3.2 Testing tracks
The EarthNet2021 challenge provides different testing datasets, which allow for
testing the accuracy of the trained models. The so-called testing tracks use different
criteria to check the performance of the model on different attributes. The following
4 tracks are explained: The main in-domain track (IID), the robust out-of-domain
track (OOD), the extreme summer track, and the seasonal cycle track.

• Main (IID) track:
This track checks the model’s validity and has very similar test mini-cubes
to the training set. It contains around 4000 samples from the same region
as the training set. Additionally, it was assured that there was no temporal
overlapping between the samples of the same region. The models get 10 context
frames of the 5-daily imagery back in time. Furthermore, 150 frames of the
static topography and dynamic climate conditions are added 50 days back in
time and 100 days ahead of time. The models should output 20 5-daily outputs
of RGBNIR satellite imagery for the following 100 days. These can then be
evaluated with the ground truth.

• Robustness (OOD) track:
This track checks the robustness of the model when it comes to geo-locations.
This means that some test images can be from the different tiles as seen in
the training set. It contains a similar amount of test samples, but as these
are from different domains it tests the spatial generalization capacity of the
models. Also for this track, the context and prediction length respectively are
10 5-daily frames in the past (50 days back) and 20 5-daily frames ahead (100
future days).

• Extreme summer track:
This track includes only test images from the extreme summer of 2018 in
northern Germany. This implies that the test set differs in temperature from
the training set. In this case, the track includes 20 5-daily context frames from
the past, and a prediction is made for the following six months.

• Seasonal cycle track:
This track spreads the test images over a longer period of time to check the
prediction performance over different seasons. The context frames are provided
over the past year and the prediction time frame is over the next two years.
Like this, the models are being evaluated in the capability of the generalization
of four seasons.
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3. Data

3.3 EarthNet score
The evaluation of predictions in the case of this challenge is influenced by multiple
factors and is not straightforward. The clouds and other unforeseen disturbances
might hinder evaluation and lead to untrustworthy predictions. For example, a
ranking only using the root-mean-squared error (RMSE) would not consider such
disturbances. Due to this reason, EarthNet2021 avoided imperfect predictions by
combining multiple components into one EarthNetScore.

• MAD:
The first score uses the median absolute deviation (MAD) between the predic-
tion and test sample. The MAD score is a good evaluation of the distance in
pixel space, which is desired to be as close as possible between the predicted
and target values. It simply quantifies how close the pixels are in a robust way.

• OLS:
Next, the OLS score is the difference of ordinary least squares (OLS) linear
regression slopes of the normalized difference vegetation index (NDVI) time
series. This checks if the prediction follows the trend in vegetation change.
The NDVI maps are computed for the target and protection series after which
the OLS models are fitted over time for each pixel. The comparison between
the slopes then gives the score for this evaluation.

• EMD:
Similarly, the third score indicates the earth mover distance (EMD), which is
the pixel-wise distance between prediction pixels and the NDVI time series,
but over a short span of 20 timesteps. This and the previous OLS score are
robust against missing data points.

• SSIM:
The final score is the structural similarity index measure (SSIM) which stands
for the similarity of spatial structure between predicted images and target
frames. It computes the average SSIM over channel and timestep. The SSIM
index is calculated on various windows of an image. The measure between two
windows x and y of common size (NxN) is [22]:

SSIM = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (3.1)

Where, µx and µy are the pixel sample mean of respectively x and y, σx and
σy the variances, σxy the covariance, c1 = (k1L)2, c2 = (k2L)2, L the dynamic
range of the pixel-values (2#bits per pixel − 1), k1 = 0.01, and k2 = 0.03

Then the EarthNetScore (ENS) is calculated by the harmonic average of the four
mentioned components as shown in Equation 3.2.

ENS = 4
1

MAD + 1
OLS + 1

EMD + 1
SSIM

(3.2)
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3.4 ESA WorldCover map
In a later step, the analysis will compare the predictions with the ESA WorldCover
map. This map gives the first global land cover for 2020 and 2021 at 10 m resolution.
It is based on Sentinel-1 and Sentinel-2 data and was developed and validated in
near-real time. The map is shown in Figure 3.3.

Figure 3.3: ESA landcover map: The complete WorldCover showing the globe
categorized in land usage. [25]

The demand for precise and up-to-date information regarding land use and its
changes has significantly increased in a rapidly evolving environment due to climate
change. However, until now, regional or continental land cover maps mostly relied on
low-resolution images. To address this, the European Space Agency (ESA) initiated
the WorldCover project, inspired by the 2017 WorldCover conference.

One of the key achievements of this project was the release in October 2021 of a
freely accessible global land cover map for 2020, consisting of 11 land cover classes.
It underwent independent validation by ESA, resulting in a global overall accuracy of
approximately 75 %. Given the positive response from users, ESA decided to expand
the WorldCover project and tasked the WorldCover consortium with producing an
updated version for 2021, aiming for even higher quality. The new WorldCover map
for 2021 was made available on October 28, 2022, and achieved a global overall
accuracy of 76.7 % [25].
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The dataset contains high-resolution images and due to the large image sizes,
only the tiles containing predicted samples were downloaded. For this, the grid
coordinates of each tile were obtained and the percentages of land cover in this tile
were stored in a data frame. The ESA WorldCover map categorizes the landscapes
into 11 different sorts of coverage:

• Tree

• Shrub

• Grass

• Crop

• Built Up

• BareSparse

• SnowIce

• Water

• Wetland

• Mangroves

• MossLichen

The images of Figure 3.4 illustrate the frames extracted from the data for
respectively the tiles 30TYR and 33VVG. These tiles are based on the military grid
reference system and are explained in Section 4.2.1. The first frame shows a high
level of agricultural usage. The second tile shows mainly a landscape covered by
trees. These tiles will be related to the performance of the ConvLSTM.

Figure 3.4: ESA WorldCover tiles: The left frame is derived from the coordinates
30TYR and the right tile from 33VVG. The color map indicates all 11 categories of
land usage
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Chapter 4

Methods

This chapter explains the methodology of this thesis and elaborates on the imple-
mentation of the ConvLSTM model. This is followed by the explanation of the
experiments.

4.1 ConvLSTM implementation
As mentioned before, the chosen model for implementing satellite imagery prediction
is the ConvLSTM model. This model belongs to the top performing models of the
submitted improvements in the EarthNet2021 challenge. To analyze the performance
on different attributes in a later step, this neural network needs to be trained first.
For this, the pre-processed EarthNet2021 was downloaded and the model was trained
on the training data.

4.1.1 Parameters

The training process was completed with the following parameters:

• Train batch size = 1

• Validation batch size = 1

• Test batch size = 1

• Number of workers = 4

• Loss: Adam L1 loss
(arguments: learningrate = 0.001,
Beta=(0.9,0.999))

• Learning rate schedule:
MultiStepLR, Gamma = 0.5
(milestones: 10 Epochs, 20 Epochs,
50 Epochs)

• Context length = 10

• Target length = 20

• Input size = (128x128)

• Hidden dimension = 32

• Number of layers = 3

• Kernel size = (3x3)

• GPUs = 1

• Max. Epochs = 60
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4. Methods

4.1.2 Setup

The model was implemented in a virtual conda environment and the open-source
code of the Diaconu ConvLSTM [6] was used. The following commands describe the
workflow of setting up the model:

Prepare the conda environment:

conda env c r e a t e −f enpt111py39 . yml

Activate the environment:

conda a c t i v a t e enpt111py39

Data download:

python s c r i p t s /data_download . py

Set the chosen model parameters in the configuration file:

. / s r c /models /pt_convlstm/ c o n f i g s / convlstm . yaml

Train the model with the Python script:

python . / s r c /models /pt_convlstm/ t r a i n . py \
−−s e t t i n g ="./ s r c /models /pt_convlstm/ c o n f i g s / convlstm . yaml "

Predict with the trained model:

python . / s r c /models /pt_convlstm/ t e s t . py \\
−−s e t t i n g =./ data / exper iments /conv_lstm/

vers ion_31 / s e t t i n g s . yaml \\
−−checkpo int =./ data / exper iments /conv_lstm/

vers ion_31 / checkpo int s /Epoch−epoch=59−ENS−
EarthNetScore =0.3285. ckpt \\

−−t rack=i i d \\
−−pred_dir =./ data / s c ra t ch / preds /conv_lstm/

vers ion_31 / i i d _ t e s t _ s p l i t

The Python version in this environment is 3.9.7 in combination with Anaconda3.
The main libraries used are machine learning tools such as Pytorch with the help of
computation libraries like NumPy, Pandas, OpenCV, MatPlotlib, and many more.
The editor to modify and interact with the environment is the IDE Visual Studio Code.
Some modifications to the code were necessary to allow this model to run on a local
computer. Initially, the training process was utilizing multiple GPUs and the backend
was not Windows compatible. After modification, the code was executable locally.
The same root directory was used to create additional notebooks to process and
analyze the prediction data. The files can be found on the following GitHub repository:
https://github.com/JeroenSmets/An-analysis-of-landscape-predicition
s-from-a-convolutional-LSTM-trained-on-the-EarthNet2021-dataset.git
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4.1. ConvLSTM implementation

4.1.3 Training

The model was trained on a local computer and therefore was limited to using only
one GPU. This resulted in long training times of approximately 3 hours per epoch.
Due to restricted memory usage, the batch size of the training, validation, and test
processes was also limited to one. The training process therefore was lasting multiple
days. In total the model consists of 201 K trainable parameters. These are split over
its layers, where the first ConvLSTMCell0 contains 48.5 K, the ConvLSTMCell1
73.9K, the ConvLSTMCell2 73.9 K, and the final ConvLSTMCell3 5.2K parameters.
The model layers have the following architecture:

ConvLSTM(
(0) : ConvLSTMCell (

( conv ) : Conv2d (42 , 128 , k e r n e l s i z e =(3 , 3) , s t r i d e
=(1 , 1) , padding =(1 , 1) ) )

(1 ) : ConvLSTMCell (
( conv ) : Conv2d (64 , 128 , k e r n e l s i z e =(3 , 3) , s t r i d e

=(1 , 1) , padding =(1 , 1) ) )
(2 ) : ConvLSTMCell (

( conv ) : Conv2d (64 , 128 , k e r n e l s i z e =(3 , 3) , s t r i d e
=(1 , 1) , padding =(1 , 1) ) )

(3 ) : ConvLSTMCell (
( conv ) : Conv2d (36 , 16 , k e r n e l s i z e =(3 , 3) , s t r i d e

=(1 , 1) , padding =(1 , 1) ) ) )

Figure 4.1: Validation ENS score after
each epoch during training.

After training the model for 60
epochs it was interrupted automatically
as this was configured. Figure 4.1 is
showing the validation score for each
epoch. It is clear that after some epochs
the performance converges to its maxi-
mum capability. In the last 10 epoch
steps the model was fluctuating only
with very small accuracy differences.
The maximum validation score reached
during training was at epoch 59 with a
score of ENS = 0.3285. Further train-
ing was not expected to make significant
improvements. The trained model was
stored for every epoch and finally, the
checkpoint at epoch 59 was used for fur-
ther analysis.
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4. Methods

4.2 Experiments

This section discusses the approach to studying the predictions of the trained model
in the form of three experiments. This analysis has the goal of better understanding
where the limitations of the ConvLSTM come from. In the literature, none of the
models was able to exceed the score of 0.3425 and make any major improvement.
This supported the idea that rather than finding an improving machine learning
model, the existing models should be investigated on where the bad performance is
coming from. The problem lies more within the data and the focus of the application
than the capabilities of the machine learning models. In particular, it is shown that
the performance of the model depends on the location, the variance, and the land
cover. This finding shows the importance of narrowing down the type of landscape
prediction and the related objective.

4.2.1 Location

The first experiment compares the score of every prediction to the location of the
satellite images. This is required to see which climate characteristics conform to
which score. Our field of interest is Europe and investigating the vegetation of
multiple areas shows us that there are many differences.

To investigate the score of every location the first step was to split the scoring cal-
culation for every sample individually. The predictions are sorted by their Sentinel-2
tile coordinates. Every tile is named after the following convention:

N1C1C2, with
N1: Two digit number representing the longitude
C1: One character representing the latitude
C2: Two characters representing the sub quadrant

For Europe: (As shown in Figure 4.2)
N1: 29 to 34 respectively from west to east
C1: S, T, U, V respectively from south to north

Every tile used in the test set consists of a random amount of samples within
the tile’s area. Previously, the model’s performance was checked by iterating over
all tiles and calculating the overall score. Now, the score will be calculated for one
sample and stored in a data table with its corresponding sample name. Every sample
was named and stored as a compressed NumPy array according to the following
structure:

t i l ename_daterange_hrcoordinates_mesocoordinates . npz

For every tile, the mean was taken from all the scores within this tile. With the help
of the bounding coordinates of every tile, the representing score was indicated on a
map. Also, the mean scores were checked per latitude in Europe. The mean values
were obtained by filtering the sample tile names by the latitude characters. This
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4.2. Experiments

resulted in four scores for the coordinates S, T, U, and V. This was motivated by
the observation that the scores on the map were varying more along the latitude
compared to the longitude.

Figure 4.2: The HLS tiling system is identical to the Sentinel-2 coordinate system.
The system is aligned with the Military Grid Reference System (MGRS) [16]

4.2.2 Variation

The second analysis is studying the change in vegetation of the images. This is
important to analyze as the challenge of the model is to predict sudden changes.
The performance is therefore also related to the amount of change in the image
time series. Exploring the variation corresponding to the performance can help us
understand which tiles are influencing the general performance in a negative way.

For this experiment, the NDVI image was extracted from each mini cube. Then,
for each frame of the time series, the average NDVI score was calculated, resulting
in a representative greenness value for each time point. For every time series, the
average greenness and its standard deviation were obtained. Finally, the score was
calculated for every sample. This constructed a data table of the 4219 samples
including the NDVI value per time step, the mean, the standard deviation, and the
ENS. This data helps to see the correlation between the vegetation change and the
performance of the predictions. Next to that, the cloud coverage should be brought
in relation to the NDVI variance. For this, the cloud masks were extracted from
every frame of the mini cubes. Then the percentage of cloud coverage was calculated
by division of the number of masked pixels by all pixels. This information was stored
with every sample for later processing. This data can easily be compared to the
previously mentioned table with the ENS, mean, and NDVI variance data table.
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4.2.3 Land usage

This experiment utilizes the ESA WorldCover map [25] to extract the land cover
information for each tile consisting of predicted samples. The aim is to represent
for each tile the percentages of land usage. The sample locations within a tile were
randomly chosen, so the percentages of land usage just indicate a higher chance that
one sequence is from a certain land cover category. The kind of land cover has a big
influence on the prediction performance. Some vegetation types are easier to predict
than others. For example, the changes to a tree-covered area will remain the same
and are easy to predict, but agriculture is harder to foresee as the farmer can make
unexpected changes to the fields.

As a first step, the bounding coordinates of the appropriate Sentinel-2 tiles were
used to download the same tile from the ESA WorldCover map. The high resolution
(10m) limited the analysis to the relevant tiles to prevent long computation times.
Then these arrays were analyzed on how much percentage of every usage category is
present. There are 11 different landscape utilizations and for every array (representing
an image of a tile) the number of pixels of every category was divided by the number
of array elements. Multiplying this by a hundred gave the percentages of land usage
per tile. This resulted in a data frame with data about the land cover for every tile
consisting of predictions. To plot this data on a map, the percentages were used to
create pie charts, and together with the Sentinel-2 tile coordinates the pie charts
could be visualized on the right location of the map. Additionally, the color map of
the pie charts was used to create a legend indicating which color represents which
land usage.

22



Chapter 5

Results

This chapter shows the results of the proposed analysis. First, the performance of the
ConvLSTM is discussed. This is followed by the results of the experiments.

5.1 ConvLSTM performance
The trained ConvLSTM model was used with the EarthNet2021 dataset consisting
of four different testing tracks. Table 5.1 lists the EarthNet score and its components
for all four testing tracks. The overall performance for this model is slightly better
than the performance of the submission on the challenge. However, this is only a
difference of 0.2 %, which gives consideration for analyzing what is causing this
model to underperform. Clearly, the optimization of the model parameters cannot
make a big difference in prediction accuracy. The main focus of this thesis lies on the
main IID testing track. This is because this track consists of the most data spread
over Europe and also because the predictions are the most similar to the targets.

Table 5.1: EarthNet scores for trained ConvLSTM

Track ENS MAD OLS EMD SSIM

IID 0.3286 0.2654 0.3527 0.2638 0.5626
OOD 0.3213 0.2544 0.3533 0.2672 0.5139
extreme summer 0.2283 0.2251 0.2976 0.1994 0.2127
seasonal 0.2104 0.2161 0.326 0.2113 0.152
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The following Figures 5.1 show the frame time-series for one of the samples
in the 31UES (Benelux area) tile dated between 2018/03/28 to 2018/08/24. The
illustration demonstrates landscape images in 10-daily time steps. The first sequence
is representing the target images showing the reality to have a reference image to the
predictions. These images are compared to the foreseen images to obtain the scoring.
The blacked-out pixels here represent the cloud masks, which are not considered in
the model. The predictions are shown in the second time series. At the first steps of
the time series, the predictions seem accurate and the landscape patterns look very
similar. However, when the landscape changes in later steps the predictions seem
less accurate.

Figure 5.1: The output of the ConvLSTM model in comparison to the reality.
RGB time series of target and prediction frames. Target time steps with 10 daily
intervals.

Figure 5.2 is showing the vegetation greenness of the same time series, instead of
colored images. The color map next to the sequences indicates the score on the NDVI
scale. The landscape represents at the beginning of the sequence a high amount of
greenness and scores less on the NDVI score towards the end of the time series.

Figure 5.2: NDVI time series of target and prediction frames. Target time steps
with 10 daily intervals.
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5.2 Experiment outcomes

The analysis conducted on the outcome of the trained model consists of three parts.
The prediction results are first studied on their location and the model’s performance
is split into regions. For this, one region is seen as a Sentinel-2 tile. The second
experiment examines the variation in the vegetation greenness of the image time
series. Last, the land cover percentages per tile are shown and compared to the
performance.

5.2.1 Experiment 1

This experiment investigates the score according to the tile location. As the different
areas in Europe have different characteristics it is useful to see how the varying
landscapes score. The Sentinel-2 tiles are marked with first a number indicating the
longitude, followed by a character describing the latitude, and finally two characters
determining the sub-quadrant. For example, the tile 29SND contains samples at
longitude 29, latitude S, and sub-quadrant ND.

Figure 5.7a shows the EarthNet score performance for every target tile in Europe.
Overall, we see that central Europe doesn’t score well and that the Mediterranean
and Scandinavian areas perform better. The map indicating the score shows clearly
that the performance varies with changing latitude, while the tiles laying in the same
longitude are more likely to have the same score. This characteristic was expected
as the general weather conditions change more over the latitude rather than the
longitude. The score for one tile was calculated as the mean score between the scores
of all sample time series in this area. The score for one mini cube was calculated
according to Equation 3.2.

Next, some examples will demonstrate which characteristics will represent dif-
ferent locations and how this will be expected to influence the prediction performance.

Mediterranean area: The vegetation is drier in the south than in the north
of Europe, due to weather circumstances. This feature will be represented in the
prediction score, as dry landscapes will have less change in vegetation. Landscapes
that do not change much over time are easier to predict. Multiple indicators such as
temperature and precipitation (provided as input in the ConvLSTM model) support
this behavior. The cloud coverage in this area is low, leading to less rain and high
temperatures. A climatic scenario like this leads to lower values on the NDVI scale
and results mostly in brown landscapes. The average score of all tiles in this area
reaches an ENS performance of: 0.3275 (Latitude S)
Central Europe: This region varies a lot in land usage. In central Europe, there
is a lot of agriculture, many grass or tree landscapes, and even mountains. They
all have very varying behavior. Additionally, there is generally a high percentage of
cloud coverage. The precipitation rate is higher and the vegetation is more likely to
change. These multiple options in the same climatic area will be harder to predict,
as the input variables remain the same. The combined score of all tiles in this region
is: 0.2859 (Latitude U)
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Scandinavia: The last zone contains again different characteristics. Mainly this
area is covered by trees, shrubland, and rocky landscapes. The landscape does not
include many changes as the vegetation stays the same throughout the seasons. The
precipitation and cloud coverage is high, but as the vegetation does not have many
changes, this area is expected to have a good prediction performance. Together, all
tiles in this area add up to an EarthNet score of: 0.3495 (Latitude V)

5.2.2 Experiment 2

The second experiment investigates the variation over the sample time series of the
NDVI values for each frame. In Figure 5.3a the scatter plot is shown between the
average NDVI variation per sample and the corresponding EarthNet score. The
trend shows that a low variation results in high accuracy, medium variance results
in low performance, and when the variation increases again the score is increasing
significantly. The greenness variation per tile was plotted on a map in Figure 5.7b
and can be compared to the score per tile on the image 5.7a. The variation increases
with a higher latitude on the map. For the score, we have a minimum in central
Europe and maximum performance for the lowest and highest latitude. It is expected
that the landscape in the north has less change than in central Europe. However,
the graph shows that these frames vary more. This occurrence is related to the cloud
coverage in these areas, as there are more clouds in higher latitudes. Relating the
amount of cloud-covered pixels to the NDVI greenness variation, as shown in Figure
5.3b, shows that more clouds cause higher greenness variation. This explains the
high variance in the north of Europe.

(a) EarthNet score per variance (b) Variance per cloud coverage

Figure 5.3: Two graphs: (A) represents the EarthNet score against the NDVI
variation. (B) Gives the NDVI variation for the percentage of clouds in samples.
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The cloud coverage influences the greenness variation of the time series, while
a high variation does not directly imply a bad prediction performance. Next to
the NDVI variation, the average SSIM index for every predicted time series was
studied as an additional indicator for the similarity between the pictures. The SSIM
is calculated according to Equation 3.1 and gives a score on how similar the two
pictures are. Figure 5.4 gives the average SSIM score for every predicted tile, where
the score represents the similarity between the first and the last predicted image in
the sample. As we can see, the similarity index shows that the landscapes in central
Europe vary the most. As the clouds must be ignored in order to investigate the
landscape change of the frames, the predicted samples were used for this investigation.
As shown in Appendix A, Figure A.2 gives the average SSIM score per tile latitude.
Central Europe performs here poor and the Mediterranean and Scandinavian regions
well.

Figure 5.4: A map of Europe with the SSIM score, indicated by a color map, per
Sentinel-2 tile

To finalize the two previous experiments, three time series are illustrated next to
each other in Figure 5.5. In the first column, the time steps are shown. These are
the 20 target frames in five daily intervals. Next to the sequences, two bar plots are
indicating respectively the EarthNet score (green) and the NDVI variation (blue).

The first sample is from the tile 29SQB and represents a typical landscape in
the Mediterranean area. Respectively to the other time series the cloud-masked
pixels are very low here. The landscape looks very dried out (brown colored) and
the vegetation is not changing a lot. The ENS performance is high and the NDVI
variation is low.

The following mini cube gives a frame sequence from the tile 33UXQ, which is
located in central Europe. This image includes already many cloud-covered areas.
Clearly, this landscape is changing a lot as this is agriculture. The fields change
constantly which results in a low similarity index. The overall score of this time series
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is low and the NDVI variation is medium to high. The frequently changing patterns
of the fields cause a lot of unexpected changes which are very hard to predict. This is
due to the observation that crop field arrangements are dependent on the individual
farmer’s choice. The usage of fields relies less on the foreseen weather variables which
makes it harder for the model to consider.

The last sequence is from the tile 32VPP and is from the Scandinavian region.
Here, many frames are utilized by cloud-marked pixels. The high cloud utilization
is represented in the NDVI variation of the time series. This is not related to the
similarity between the images and therefore does not influence the overall score in a
negative way. The landscape seems to be covered by trees and shrubland. Between
the non-cloud-covered areas, there are not many differences. This results in a good
ENS performance for these regions.

Figure 5.5: Time series with 10 daily time steps of three locations with different
characteristics over a time interval from April to September. The first is from a
Mediterranean area, the second from central Europe, and the last from Scandinavia.
On the right, the bar plots represent their EarthNet score and NDVI variation.

To summarize, this experiment analyzed the predicted satellite imagery on multi-
ple variables such as NDVI variation, SSIM score, and cloud coverage. Combining
the greenness variation with the similarity index led to the conclusion that the
performance is dependent on unexpected changes represented in the similarity score.

5.2.3 Experiment 3

The last experiment investigates the land usage for each tile. In Figure 5.7c the land
cover percentages are illustrated with the pie charts. This map can be compared to
the other maps with the EarthNet score and NDVI variation. It stands out that the
worst-performing areas have a high percentage in crop fields and agriculture. These
landscapes have very unpredictable features and include changing colors and shapes.
The change in vegetation of the fields relies on the farmers who decide on the usage of
the area. This is independent of the climatic variables and therefore harder to learn
for the model, as it relies on the context frames and the climate forecasts. The better
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scoring areas, such as the tiles containing latitude S and latitude V, have clearly
less percentage in crop fields. Those tiles consist mainly of tree coverage, grassland,
and shrubland. These types of vegetation zones are completely dependent on the
climate and are not exposed to sudden changes caused by humans. For example, a
grass landscape will only change its greenness according to the precipitation and
temperature variables. This is easier to predict as the climatic variables already
indicated a change in climate.

In Figure 5.6 the average percentage of landcover is calculated per tile latitude.

Figure 5.6: Average land cover % per tile latitudes
S, T, U, and V. Land usage was categorized into
(1) cropland, (2) trees, grass, and shrub, and (3)
wetlands, mangroves, and moss.

Here, only the most important
categories are considered. The
purple bar is representing agri-
culture usage. The green bar is
the sum of the tree, grass, and
shrub landscape. The last yel-
low bar stands for the combi-
nation of herbaceous wetlands,
mangroves, and moss lichen. It
is clear that the central Euro-
pean region utilizes a lot more
crop fields. The average percent-
age reaches nearly 40 %, which
results in a smaller percentage
of green vegetation. This in-
creases the probability that a
sample from this tile is used for
agriculture and results in more
samples with lower prediction
accuracy. In the better-scoring
Mediterranean regions, there is
clearly less percentage of cropland usage. Here, the employment lies between 10 %
and 20 %. This means that the chance of a sample being taken from cropland is
lower. The landscapes such as trees, grass, and shrub have a higher similarity index
over time and result in better scores. In the south, a lot of the green landscapes are
grass fields. This vegetation still varies over the seasons according to the weather
variables. However, this is easier to predict for the models as these changes depend
on the climatic input and result in a high score. In the best-scoring Scandinavian
region, cropland usage is less than 5 %. The chance that a sample is taken from a
landscape occupied by agriculture is very low. In the north, the most vegetation is
trees and shrubland. These landscapes have a minimal change and are therefore easy
to predict.

To conclude, the outcome of this experiment is that the model’s performance
changes by latitude with high contrast. Analyzing the land usage over Europe showed
that in certain latitude regions, agriculture is dominating the land utilization. This
is reflected in the prediction score, as this land usage is the hardest to predict. The
score is highly dependent on the land cover.
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(a) EarthNet score per tile

(b) NDVI variance per tile

(c) Land cover per tile

Figure 5.7: Three maps: (A) ENS, (B) NDVI variation, and (C) land cover
indicated with a color map in their Sentinel-2 tiles on a map of Europe.
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Chapter 6

Use case

This chapter demonstrates the use case of the project. First, the procedure of setting
up the use case is explained, followed by the demonstration of the prediction results.

6.1 Procedure
The aim of the use case is to predict the landscape images on the bases of two
scenarios for the future. The aim is to manipulate the input data in a way that the
prediction is made on future foreseen climatic variables. The scenarios are based
on the forecast of KNMI’14: Climate Change scenarios for the 21st century from a
Netherlands perspective [1].

In 2014 KNMI developed four scenarios outlining climate changes in the Nether-
lands by the years 2050 and 2085. These scenarios, known as the KNMI’14 climate
scenarios involve variables such as temperature, precipitation, and sea level. Each
scenario is accompanied by a distinct narrative, which is influenced by various factors,
such as the level of CO2 emissions. The four KNMI’14 scenarios vary in terms
of the extent of global warming (Moderate or Warm) and potential change in air
circulation patterns (Low or High). These scenarios are illustrated in Figure 6.1.
They establish the framework for envisioning potential future climate change in the
Netherlands. Their purpose is to assess the implications of climate change and deter-
mine the significance and urgency of implementing measures for climate adaptation.
The temperature in the Netherlands is projected to continue rising, with the most
significant increase expected during winter and the least during spring. This will
lead to a decrease in the number of cold winter days and an increase in the number
of warm summer days, along with a higher likelihood of heat waves. Additionally,
the temperature differences between coastal and inland areas will amplify in summer
but diminish in winter.

31



6. Use case

Figure 6.1: KNMI’14 climatic prediction [1] consisting of four different scenarios
GL, WL, GH , and WH . All considering different conditions influenced by temperature
rise and air circulation.

More specifically, KNMI’14 predicts the following alterations for the different
variables: The precipitation levels are expected to increase. The probability of
extreme rain showers accompanied by thunderstorms and hail will rise. However, two
scenarios (GH and WH) suggest a decrease in mean precipitation during summer.
The sea level rise is expected to accelerate and depends a lot on global temperature
increases. By 2050, relative to the period between 1981 and 2010, the sea level will
rise up to 40 centimeters. By 2085, it could be up to 80 centimeters higher along the
Dutch coast. Changes in wind speed are anticipated to be minimal. The number
of summer days with southerly to westerly wind directions will decrease across all
scenarios, with the greatest reduction in the scenarios that exhibit more significant
changes in air circulation patterns (GH and WH). Additionally, the GH and WH

scenarios indicate an increase in westerly winds during winter. Solar radiation has
slightly increased in recent decades, partially attributed to reduced air pollution.
Clouds have also become more transparent, resulting in greater solar radiation. In
the GH and WH scenarios, there is a slight decrease in cloudiness expected during
future summers due to increased easterly winds.

32



6.1. Procedure

For the demonstration of the vegetation change two scenarios of the 2085 predic-
tions were chosen. The two most extreme forecasts were chosen to see the changes
in a worst-case scenario. As illustrated in Figure 6.2 the climatic variable change
was considered for scenarios GH and WH . In the first scenario, GH predicts a mean
precipitation increase of 5% and a raise of 1.7◦C in temperature. The other scenario
foresees a rise in precipitation of 7% and a change in temperature of 3.7◦C.

Figure 6.2: Weather variables predicted changes according to KNMI’14 scenario
changes [1]. The forecast is done for 2050 and 2085. All four scenarios predict
variables such as Sea level, temperature, precipitation, and solar radiation.

The goal of this use case is to change the climatic variables according to the chosen
scenarios of KNMI’14. For this, the trained model should be tested on the original
samples, the manipulated context according to GH 2085, and the changed samples
with input variables from WH 2085. To accomplish this the original climatic variables
were extracted from the context mini cubes and changed to the desired values. For the
precipitation, the predicted percentage increase was added to the array representing
the amount of rain for every pixel. For the temperature, the corresponding arrays
were also manipulated by adding to each element the recalculated values of the
scenarios. The climatic variables in the ConvLSTM model were re-scaled to lie in
a range from 0 to 1. For the precipitation the values are re-scaled according to
Equation 6.1 and for the temperature according to Equation 6.2. The manipulated
data is then stored back in the mini cubes and saved as a new context dataset.

Rain(mm) = 50 ∗ rain (6.1)

Temperatur(◦C) = 5000(2temp − 1) (6.2)
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6. Use case

6.2 Predictions
The newly created test tracks based on scenarios GH and WH are used to make
predictions starting from satellite images taken from the past. This use case creates
a scenario that investigates how an existing landscape reacts to weather variables
predicted for the future. This could be helpful to understand how landscapes could
evolve in the future due to certain climatic conditions as predicted by KMNI’14.
Starting from a context with certain vegetation characteristics it is possible to analyze
the impact of the temperature and precipitation on such landscapes.

In Figure 6.3 three frame scenarios are illustrated from the tile 31UES (Benelux
area). To have a comparison, first, the target time series is shown for the same
location, which represents reality. All time series are representing 10-daily time steps
showing a period of the next 100 days. The first prediction sequence gives the original
frames, the second gives the adapted scenario WH , and the final frames represent the
scenario GH . The new predictions show that scenario WH , with a rise in precipitation
of 7% and a change in temperature of 3.7 ◦C, predicts a greener landscape than the
original time series. Overall, the frame into a monotone green-colored area. The
other scenario with an increase of 5% and a rise of 1.7 ◦Cin temperature converges
to a browner landscape, which means that vegetation seems to disappear.

Figure 6.3: Four sequences: First, the target frames for reference, followed by the
predicted time series with original climatic input. Last, the two sequences respectively
the prediction with manipulated input according to scenarios WH and GH .
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6.2. Predictions

In Figure 6.4 the vegetation greenness is shown for the different scenarios. The
NDVI scale shows the amount of vegetation for each frame. As previously mentioned
the scenario WH2085 changes to more vegetation and the scenario GH2085 converges
to less greenness.

Figure 6.4: Three NDVI greenness time series predictions with the original input
and two manipulated inputs according to climatic KNMI’14 scenarios WH and GH .
All time series have a time step of 10 days.
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Chapter 7

Conclusion

In the final chapter a conclusion is drawn from the analysis. First, the results will
be elaborated in a discussion by zooming out and seeing the outcome from a bigger
perspective. Finally, some future suggestions are given, and how the results of this
thesis can help the following research

This project has started by reviewing the EarthNet2021 challenge and studying
the existing literature on this topic. Existing models were created to predict satellite
imagery based on the EarthNet dataset. This data consists of Sentinel-2 frames and
additional climatic variables. Only minor improvements were noticed, comparing the
capabilities of the submitted models. The limitations of those models were studied
by choosing a dedicated model to analyze its predictions. For this, the model was
trained to achieve its best performance. Then, the predictions were made on the
EarthNet IID test track. The prediction scores, location, NDVI variance, similarity
index, cloud coverage, and land usage were studied and compared to each other.
This gave a better understanding of why certain predictions resulted in poor scoring
performance.

Several tests were performed, such as plotting the scores of each tile on a map to
see where the inaccurate predictions are located. Also, the average scores per latitude
coordinate were compared. A second experiment investigated the NDVI variance and
plotted these values according to their location. The EarthNet score was compared
as a function of the greenness variation. Cloud coverage was brought in relation to
the variance and the SSIM index was put in context with the NDVI change. The final
analysis included seeing the land usage on the map. The percentages of landscape
occupation were compared to each other according to their latitude coordinate.

Checking the locations showed that in the latitude of central Europe, the lowest
accuracy was gained. The results showed that a medium NDVI variance and low
SSIM index score were performing the worst. This happened to be the landscapes
where the most land usage is utilized by agriculture. To summarize, the performance
of the prediction was particularly poor for tiles of latitude U. Many frames from this
area include crop fields and therefore have unexpected variations in the landscape
with the lowest similarity index (not considering the clouds). As these changes
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are dependent on the farmer’s choices and rely less on the climatic variables these
images are hard to predict. This results in a bad performance. Regions like these
perform approximately 10 % less than good-performing tiles and therefore influence
the overall performance in a negative way.

7.1 Discussion

In this section, the findings of this project will be discussed in a broader context.
As previously concluded, the results of the tests showed which characteristics of
satellite images lead to low-accuracy predictions. This knowledge can improve our
understanding of the limitations of the model. Rather than trying to optimize the
parameters of the machine learning model and trying to find the best-performing
architecture, the approach of this thesis is to specify the application of the models
and increase the performance by narrowing down the target.

At first, a model from the literature was chosen on which the experiments have
been conducted. The training of the ConvLSTM resulted in an ENS performance
of 0.3286 and showed a slight improvement of 0.2% compared to the accuracy of
0.3266 from the original model. Optimizing the model parameters does not result
in significantly better results. Relating the performance to the other models in
the literature shows that even exchanging model architecture does not improve
the accuracy extensively. The best-performing model in the leaderboard of the
EarthNet2021 challenge is the EarthFormer with a score of 0.3425. The Earthformer
is a space-time transformer using an attention block called Cuboid Attention [8].
Although this system is using a completely different architecture, which is currently
seen in the literature as the most capable model for deep learning applications, the
performance only increases by 1.59% to the self-trained ConvLSTM. The worst-
performing model in the literature is the SGEDConvLSTM with a score of 0.3164.
This is only 1.02% accuracy less than the trained model from this thesis. So, it is
clear that changing the architecture and its corresponding parameters only results in
a performance difference of a total of 2.61%. These differences are barely noticeable
and motivated the main question of this thesis to investigate the data and application
of the task.

Taking into account that the locations in Europe have different attributes the
model shouldn’t be biased by its data selection. The first experiment resulted in
a categorization of scoring performance according to the latitude coordinates. It
should be mentioned that the cloud coverage also varies along this vertical axis.
EarthNet2021 pre-filtered their data by randomly choosing 110 tiles with at least 80%
land visible for the best-performing tile in the time series together with a minimum
of 90% data coverage [18]. The clouds were classified using a deep residual neural
network [15] and specifies these pixels as unusable. As there are significantly fewer
clouds in the south this results in more processed data for these regions. As the
Scandinavian regions can reach up to approximately 75 % of cloud pixels these
samples have a lot less computed data. Comparing the regions over their latitude
brings many different climatic characteristics and therefore a lot of varying vegetation.
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The EarthNet team already discussed the bias-quality trade-off and concluded that
most high-quality mini cubes are from summer in the Mediterranean. Also, they have
shown that the dataset does not contain samples covering winter in the northern
latitudes. This is due to the cloud masking classifying snow as clouds [18]. To
compensate for the high data loss in the northern latitudes the cloud coverage should
be taken into consideration for the data preparation. The goal is to obtain a model
that will perform equally well for vegetation at different latitudes. For this, it should
have been trained on equally many time series that include the same amount of pixel
data with their corresponding climatic variables. During the dataset creation, the
cloud percentages can be taken into account when selecting the number of samples
from one region. For example, when the average of double the amount of pixels
in a tile, compared to another tile, are cloud marked then it would be helpful to
select double the amount of samples from this tile to compensate for the bias. In
this manner, we train and create a model which is unbiased and ready to predict the
landscape over Europe with higher performance independent from the location.

The second discussion relates the outcome of the NDVI variation analysis to the lit-
erature. As a result of the corresponding experiment, the score compared to the green-
ness variation showed a minimum for medium variation. Here, the cloud coverage in-
creased the variance the more you go north in latitude.

Figure 7.1: Percentage of cloud masked pixels
related to its latitude and the month of the year.
The color map indicated the percentage of clouds
and the x-, and y-axes respectively the starting
month and the latitude.[18]

The EarthNet challenge already
investigated this appearance
and showed that the more north
you go in latitude, the more
cloud coverage you have. This
is demonstrated in Figure 7.1
and was underlined with an intu-
itive example: "Most frequently,
high-quality (cloud-free) sam-
ples are found during sum-
mer on the Iberian Peninsula,
whereas there barely are 4 con-
secutive weeks without clouds
on the British Islands" [18]. The
experiment demonstrated that
more clouds lead to a high varia-
tion, but together with the sim-
ilarity index everything beyond
the minimum performing vari-
ance showed to be caused by
clouds and not influence the performance directly. In order to use this information
to achieve better performance the cause should be explained. Tiles with medium
greenness variation and a poor similarity index are shown to represent landscapes
from agriculture. These are varying extensively and include a lot of changes due to
farmer’s choices of field occupation. Improving the performance of a model dedicated
to predicting vegetation greenness change, therefore should exclude this kind of data.
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The last point to consider, motivated by the findings of the experiments, is
to narrow the application purpose of the predictions by specifying the data. The
pre-processed dataset of EarthNet2021 includes randomly selected samples over
Europe [18]. As the analysis of the land usage showed, the samples can contain all
kinds of landscapes. Re-thinking the data selection could help define the exact goal
of the predictions. This reconstruction should be done on as well the training data
as the testing data. Currently, the predictions can contain any sort of landscape and
this raises the question of what the exact intention of the models is. The models
are trained to predict the vegetation change according to the climatic variables, but
as different kinds of vegetation have completely different behavior this should be
narrowed down. This can be clarified with the following two examples:

• Example 1:
Suppose the intention of the model is to predict the greenness of vegetation
according to the changing climate. In that case, it is more applicable to
filter the data by landscapes including trees, grassland, and shrubland. Other
landscapes, that include vegetation changes not directly relying on the climate,
won’t gain additional information to this goal. The ESA WorldCover dataset
has proven to be suitable to classify which landscapes contain which kind of
usage on a high resolution [24]. This can help with the selection process of
what kind of data is needed to investigate greenness change.

• Example 2:
If the use case is to predict how agriculture is changing over time, then the model
should be trained with only this data. For instance, a seasonal prediction system
can be used in a crop yield model to assess the performance and usefulness
of such a system for crop yield forecasting [3]. This is a new application and
therefore needs to consider its related data. As these changes are less dependent
on the climate this underlines the fact that more context frames are required.
Landscapes with crop field usage have very unique characteristics and should
not be mixed with other data.

By determining the specific goal of the model a higher performance can be achieved
and the purpose gets clarified at the same time. The predictions are more useful for
further analysis as the user knows what to look for. If the purpose is for example to
predict accurate change in greenness, an investigation into future vegetation growth
could be made. As the third experiment showed the land usage data is available and
can be used for the dataset tile selection. In order to achieve a high performance the
training and test frames could exclude agriculture. This results in a good-performing
model with the aim to predict vegetation change in green landscapes such as trees,
grassland, and shrubland.
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The demonstrated use case showed climate scenarios predicted to be the future
changes in the Netherlands. As demonstrated in the modification of the annual
precipitation and temperature predictors displaying novel landscapes for hypothetical
scenarios [19], it is clear that the climatic variable has a strong impact on the
vegetation change. Both use cases show that a large increase in precipitation changes
the vegetation to a higher percentage of greenness. Lower temperature with lower
precipitation however changes the landscape to less greenness.

7.2 Future work
Finally, to complete this thesis some suggestions are given for future work. The
limitations of the trained model are discussed and propositions on how to use the
result to achieve better performance are given.

The first limitation of the ConvLSTM trained with the EarthNet2021 dataset is
that the data is not filtered down to the exact field of application. As mentioned
before, the data includes satellite images of landscapes occupied by various usage. If
the goal of this model is to predict future changes of a specific landscape type guided
by climatic variables, then the dataset should only consist of landscapes covering the
same type. The deep learning architecture ConvLSTM proved to be suitable for the
prediction of landscapes. One suggestion is to use the same machine learning model
(ConvLSTM), but re-think the data pre-processing. More features can be considered
while downloading the data such as land usage, cloud coverage, and location. In this
way, the model is biased on purpose in the direction of the prediction goal. Including
various data from different kinds of landscapes leads to the fact that the model has
fewer data to learn from for one distinctive landscape type. So overall, this study
showed that rather than focusing too much on the deep learning model it is best to
focus on the correct usage of it.

Second, the used sources were limited in computation power. As the model was
trained locally and only one GPU was used to train the ConvLSTM there were some
limitations of the parameter settings. Also, the amount of data to be processed is
bounded, and using stronger computers working with parallel GPUs could shorten
the waiting time. In the case of considering including more data fast computing
units would be of a big advantage.

Third, the model was only analyzed on one test track. Exploring the different
tracks and doing a similar investigation on the performance of the other tracks could
help understand new causes of prediction difficulties. Especially, the seasonal testing
track includes many changes as the context and target time range last over multiple
seasons. Analyzing the predictions of these and checking where the model performs
well and badly proves the strengths and weaknesses of the model. Also, the robustness
track with test samples from varying locations can further add understanding to the
flaws of the model. The predictions were already studied according to their location,
but comparing this to an additional prediction set with deviating locations can help
to determine how dependent the performance is on its exact latitude.
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Last, the model is purely dependent on the context frames and the weather
variables. The predictions are not considering the quality of the input data. This
means that the model doesn’t contemplate how many pixels are masked in the
context data and how accurate the weather predictions are. Adding a heuristic could
provide an additional parameter that indicates this.
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Appendix A

A.1 Experiment 1:
While analyzing the score related to its location it was also investigated how many of
the samples within a tile performed good, medium, and poor. This is demonstrated
in Figure A.1.

Figure A.1: Percentages of sample performance per tile
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A.2 Experiment 2:
Figure A.2 gives the average SSIM score for every tile latitude. It demonstrates that
the higher we go in latitude, the lower the similarity index is. This appearance is
similar like with the NDVI variation and is caused by increasing cloud coverage.

Figure A.2: Average SSIM Scores per latitudecoordinate

A.3 Tables and data:
All used tables and data can be found on the personal git repository of this thesis.
Also, the notebooks with code are included which was used for analysis and processing.

https://github.com/JeroenSmets/An-analysis-of-landscape-predicition
s-from-a-convolutional-LSTM-trained-on-the-EarthNet2021-dataset.git
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